| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3anr3 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 19-Oct-2007.) |
| Ref | Expression |
|---|---|
| mp3anr3.1 | ⊢ 𝜃 |
| mp3anr3.2 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) |
| Ref | Expression |
|---|---|
| mp3anr3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3anr3.1 | . . 3 ⊢ 𝜃 | |
| 2 | mp3anr3.2 | . . . 4 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) → 𝜏) | |
| 3 | 2 | ancoms 268 | . . 3 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜑) → 𝜏) |
| 4 | 1, 3 | mp3anl3 1344 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜑) → 𝜏) |
| 5 | 4 | ancoms 268 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: rprelogbdiv 15277 |
| Copyright terms: Public domain | W3C validator |