| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3anl2 | GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| mp3anl2.1 | ⊢ 𝜓 |
| mp3anl2.2 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| mp3anl2 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3anl2.1 | . . 3 ⊢ 𝜓 | |
| 2 | mp3anl2.2 | . . . 4 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 3 | 2 | ex 115 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 4 | 1, 3 | mp3an2 1336 | . 2 ⊢ ((𝜑 ∧ 𝜒) → (𝜃 → 𝜏)) |
| 5 | 4 | imp 124 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mp3anr2 1346 1dvds 11970 |
| Copyright terms: Public domain | W3C validator |