| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rprelogbdiv | GIF version | ||
| Description: The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.) |
| Ref | Expression |
|---|---|
| rprelogbdiv | ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1rr 9157 | . . 3 ⊢ -1 ∈ ℝ | |
| 2 | rprelogbmulexp 15498 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ∧ -1 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐶↑𝑐-1))) = ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶)))) | |
| 3 | 1, 2 | mp3anr3 1349 | . 2 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · (𝐶↑𝑐-1))) = ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶)))) |
| 4 | rpcn 9799 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
| 5 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ) |
| 6 | rpcn 9799 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ∈ ℂ) | |
| 7 | 6 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ) |
| 8 | rpap0 9807 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ+ → 𝐶 # 0) | |
| 9 | 8 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 # 0) |
| 10 | 5, 7, 9 | divrecapd 8881 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶))) |
| 11 | ax-1cn 8033 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 12 | rpcxpneg 15449 | . . . . . . . . 9 ⊢ ((𝐶 ∈ ℝ+ ∧ 1 ∈ ℂ) → (𝐶↑𝑐-1) = (1 / (𝐶↑𝑐1))) | |
| 13 | 11, 12 | mpan2 425 | . . . . . . . 8 ⊢ (𝐶 ∈ ℝ+ → (𝐶↑𝑐-1) = (1 / (𝐶↑𝑐1))) |
| 14 | rpcxp1 15441 | . . . . . . . . 9 ⊢ (𝐶 ∈ ℝ+ → (𝐶↑𝑐1) = 𝐶) | |
| 15 | 14 | oveq2d 5972 | . . . . . . . 8 ⊢ (𝐶 ∈ ℝ+ → (1 / (𝐶↑𝑐1)) = (1 / 𝐶)) |
| 16 | 13, 15 | eqtrd 2239 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ+ → (𝐶↑𝑐-1) = (1 / 𝐶)) |
| 17 | 16 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐶↑𝑐-1) = (1 / 𝐶)) |
| 18 | 17 | oveq2d 5972 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐶↑𝑐-1)) = (𝐴 · (1 / 𝐶))) |
| 19 | 10, 18 | eqtr4d 2242 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 / 𝐶) = (𝐴 · (𝐶↑𝑐-1))) |
| 20 | 19 | adantl 277 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐴 / 𝐶) = (𝐴 · (𝐶↑𝑐-1))) |
| 21 | 20 | oveq2d 5972 | . 2 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = (𝐵 logb (𝐴 · (𝐶↑𝑐-1)))) |
| 22 | simpll 527 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ+) | |
| 23 | simplr 528 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐵 # 1) | |
| 24 | simprr 531 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐶 ∈ ℝ+) | |
| 25 | rplogbcl 15488 | . . . . 5 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝐶 ∈ ℝ+) → (𝐵 logb 𝐶) ∈ ℝ) | |
| 26 | 22, 23, 24, 25 | syl3anc 1250 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb 𝐶) ∈ ℝ) |
| 27 | recn 8073 | . . . 4 ⊢ ((𝐵 logb 𝐶) ∈ ℝ → (𝐵 logb 𝐶) ∈ ℂ) | |
| 28 | mulm1 8487 | . . . . 5 ⊢ ((𝐵 logb 𝐶) ∈ ℂ → (-1 · (𝐵 logb 𝐶)) = -(𝐵 logb 𝐶)) | |
| 29 | 28 | oveq2d 5972 | . . . 4 ⊢ ((𝐵 logb 𝐶) ∈ ℂ → ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))) = ((𝐵 logb 𝐴) + -(𝐵 logb 𝐶))) |
| 30 | 26, 27, 29 | 3syl 17 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))) = ((𝐵 logb 𝐴) + -(𝐵 logb 𝐶))) |
| 31 | simprl 529 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐴 ∈ ℝ+) | |
| 32 | rplogbcl 15488 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝐴 ∈ ℝ+) → (𝐵 logb 𝐴) ∈ ℝ) | |
| 33 | 22, 23, 31, 32 | syl3anc 1250 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb 𝐴) ∈ ℝ) |
| 34 | 33 | recnd 8116 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb 𝐴) ∈ ℂ) |
| 35 | 26 | recnd 8116 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb 𝐶) ∈ ℂ) |
| 36 | 34, 35 | negsubd 8404 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) + -(𝐵 logb 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶))) |
| 37 | 30, 36 | eqtr2d 2240 | . 2 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)) = ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶)))) |
| 38 | 3, 21, 37 | 3eqtr4d 2249 | 1 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 class class class wbr 4050 (class class class)co 5956 ℂcc 7938 ℝcr 7939 0cc0 7940 1c1 7941 + caddc 7943 · cmul 7945 − cmin 8258 -cneg 8259 # cap 8669 / cdiv 8760 ℝ+crp 9790 ↑𝑐ccxp 15399 logb clogb 15485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-caucvg 8060 ax-pre-suploc 8061 ax-addf 8062 ax-mulf 8063 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-disj 4027 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-isom 5288 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-of 6170 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-frec 6489 df-1o 6514 df-oadd 6518 df-er 6632 df-map 6749 df-pm 6750 df-en 6840 df-dom 6841 df-fin 6842 df-sup 7100 df-inf 7101 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-n0 9311 df-z 9388 df-uz 9664 df-q 9756 df-rp 9791 df-xneg 9909 df-xadd 9910 df-ioo 10029 df-ico 10031 df-icc 10032 df-fz 10146 df-fzo 10280 df-seqfrec 10610 df-exp 10701 df-fac 10888 df-bc 10910 df-ihash 10938 df-shft 11196 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 df-clim 11660 df-sumdc 11735 df-ef 12029 df-e 12030 df-rest 13143 df-topgen 13162 df-psmet 14375 df-xmet 14376 df-met 14377 df-bl 14378 df-mopn 14379 df-top 14540 df-topon 14553 df-bases 14585 df-ntr 14638 df-cn 14730 df-cnp 14731 df-tx 14795 df-cncf 15113 df-limced 15198 df-dvap 15199 df-relog 15400 df-rpcxp 15401 df-logb 15486 |
| This theorem is referenced by: logbrec 15502 |
| Copyright terms: Public domain | W3C validator |