ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rprelogbdiv GIF version

Theorem rprelogbdiv 15616
Description: The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.)
Assertion
Ref Expression
rprelogbdiv (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)))

Proof of Theorem rprelogbdiv
StepHypRef Expression
1 neg1rr 9204 . . 3 -1 ∈ ℝ
2 rprelogbmulexp 15615 . . 3 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+ ∧ -1 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐶𝑐-1))) = ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))))
31, 2mp3anr3 1370 . 2 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · (𝐶𝑐-1))) = ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))))
4 rpcn 9846 . . . . . . 7 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
54adantr 276 . . . . . 6 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
6 rpcn 9846 . . . . . . 7 (𝐶 ∈ ℝ+𝐶 ∈ ℂ)
76adantl 277 . . . . . 6 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
8 rpap0 9854 . . . . . . 7 (𝐶 ∈ ℝ+𝐶 # 0)
98adantl 277 . . . . . 6 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → 𝐶 # 0)
105, 7, 9divrecapd 8928 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶)))
11 ax-1cn 8080 . . . . . . . . 9 1 ∈ ℂ
12 rpcxpneg 15566 . . . . . . . . 9 ((𝐶 ∈ ℝ+ ∧ 1 ∈ ℂ) → (𝐶𝑐-1) = (1 / (𝐶𝑐1)))
1311, 12mpan2 425 . . . . . . . 8 (𝐶 ∈ ℝ+ → (𝐶𝑐-1) = (1 / (𝐶𝑐1)))
14 rpcxp1 15558 . . . . . . . . 9 (𝐶 ∈ ℝ+ → (𝐶𝑐1) = 𝐶)
1514oveq2d 6010 . . . . . . . 8 (𝐶 ∈ ℝ+ → (1 / (𝐶𝑐1)) = (1 / 𝐶))
1613, 15eqtrd 2262 . . . . . . 7 (𝐶 ∈ ℝ+ → (𝐶𝑐-1) = (1 / 𝐶))
1716adantl 277 . . . . . 6 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐶𝑐-1) = (1 / 𝐶))
1817oveq2d 6010 . . . . 5 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 · (𝐶𝑐-1)) = (𝐴 · (1 / 𝐶)))
1910, 18eqtr4d 2265 . . . 4 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 / 𝐶) = (𝐴 · (𝐶𝑐-1)))
2019adantl 277 . . 3 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐴 / 𝐶) = (𝐴 · (𝐶𝑐-1)))
2120oveq2d 6010 . 2 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = (𝐵 logb (𝐴 · (𝐶𝑐-1))))
22 simpll 527 . . . . 5 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ+)
23 simplr 528 . . . . 5 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐵 # 1)
24 simprr 531 . . . . 5 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐶 ∈ ℝ+)
25 rplogbcl 15605 . . . . 5 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝐶 ∈ ℝ+) → (𝐵 logb 𝐶) ∈ ℝ)
2622, 23, 24, 25syl3anc 1271 . . . 4 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb 𝐶) ∈ ℝ)
27 recn 8120 . . . 4 ((𝐵 logb 𝐶) ∈ ℝ → (𝐵 logb 𝐶) ∈ ℂ)
28 mulm1 8534 . . . . 5 ((𝐵 logb 𝐶) ∈ ℂ → (-1 · (𝐵 logb 𝐶)) = -(𝐵 logb 𝐶))
2928oveq2d 6010 . . . 4 ((𝐵 logb 𝐶) ∈ ℂ → ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))) = ((𝐵 logb 𝐴) + -(𝐵 logb 𝐶)))
3026, 27, 293syl 17 . . 3 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))) = ((𝐵 logb 𝐴) + -(𝐵 logb 𝐶)))
31 simprl 529 . . . . . 6 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → 𝐴 ∈ ℝ+)
32 rplogbcl 15605 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 # 1 ∧ 𝐴 ∈ ℝ+) → (𝐵 logb 𝐴) ∈ ℝ)
3322, 23, 31, 32syl3anc 1271 . . . . 5 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb 𝐴) ∈ ℝ)
3433recnd 8163 . . . 4 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb 𝐴) ∈ ℂ)
3526recnd 8163 . . . 4 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb 𝐶) ∈ ℂ)
3634, 35negsubd 8451 . . 3 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) + -(𝐵 logb 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)))
3730, 36eqtr2d 2263 . 2 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)) = ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))))
383, 21, 373eqtr4d 2272 1 (((𝐵 ∈ ℝ+𝐵 # 1) ∧ (𝐴 ∈ ℝ+𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200   class class class wbr 4082  (class class class)co 5994  cc 7985  cr 7986  0cc0 7987  1c1 7988   + caddc 7990   · cmul 7992  cmin 8305  -cneg 8306   # cap 8716   / cdiv 8807  +crp 9837  𝑐ccxp 15516   logb clogb 15602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107  ax-pre-suploc 8108  ax-addf 8109  ax-mulf 8110
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-disj 4059  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-of 6208  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-map 6787  df-pm 6788  df-en 6878  df-dom 6879  df-fin 6880  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-xneg 9956  df-xadd 9957  df-ioo 10076  df-ico 10078  df-icc 10079  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-exp 10748  df-fac 10935  df-bc 10957  df-ihash 10985  df-shft 11312  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851  df-ef 12145  df-e 12146  df-rest 13260  df-topgen 13279  df-psmet 14492  df-xmet 14493  df-met 14494  df-bl 14495  df-mopn 14496  df-top 14657  df-topon 14670  df-bases 14702  df-ntr 14755  df-cn 14847  df-cnp 14848  df-tx 14912  df-cncf 15230  df-limced 15315  df-dvap 15316  df-relog 15517  df-rpcxp 15518  df-logb 15603
This theorem is referenced by:  logbrec  15619
  Copyright terms: Public domain W3C validator