![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rprelogbdiv | GIF version |
Description: The logarithm of the quotient of two positive real numbers is the difference of logarithms. Property 3 of [Cohen4] p. 361. (Contributed by AV, 29-May-2020.) |
Ref | Expression |
---|---|
rprelogbdiv | ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1rr 9088 | . . 3 ⊢ -1 ∈ ℝ | |
2 | rprelogbmulexp 15088 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+ ∧ -1 ∈ ℝ)) → (𝐵 logb (𝐴 · (𝐶↑𝑐-1))) = ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶)))) | |
3 | 1, 2 | mp3anr3 1347 | . 2 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 · (𝐶↑𝑐-1))) = ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶)))) |
4 | rpcn 9728 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ) | |
5 | 4 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ) |
6 | rpcn 9728 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ+ → 𝐶 ∈ ℂ) | |
7 | 6 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ) |
8 | rpap0 9736 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ+ → 𝐶 # 0) | |
9 | 8 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → 𝐶 # 0) |
10 | 5, 7, 9 | divrecapd 8812 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 / 𝐶) = (𝐴 · (1 / 𝐶))) |
11 | ax-1cn 7965 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
12 | rpcxpneg 15042 | . . . . . . . . 9 ⊢ ((𝐶 ∈ ℝ+ ∧ 1 ∈ ℂ) → (𝐶↑𝑐-1) = (1 / (𝐶↑𝑐1))) | |
13 | 11, 12 | mpan2 425 | . . . . . . . 8 ⊢ (𝐶 ∈ ℝ+ → (𝐶↑𝑐-1) = (1 / (𝐶↑𝑐1))) |
14 | rpcxp1 15034 | . . . . . . . . 9 ⊢ (𝐶 ∈ ℝ+ → (𝐶↑𝑐1) = 𝐶) | |
15 | 14 | oveq2d 5934 | . . . . . . . 8 ⊢ (𝐶 ∈ ℝ+ → (1 / (𝐶↑𝑐1)) = (1 / 𝐶)) |
16 | 13, 15 | eqtrd 2226 | . . . . . . 7 ⊢ (𝐶 ∈ ℝ+ → (𝐶↑𝑐-1) = (1 / 𝐶)) |
17 | 16 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐶↑𝑐-1) = (1 / 𝐶)) |
18 | 17 | oveq2d 5934 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐶↑𝑐-1)) = (𝐴 · (1 / 𝐶))) |
19 | 10, 18 | eqtr4d 2229 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+) → (𝐴 / 𝐶) = (𝐴 · (𝐶↑𝑐-1))) |
20 | 19 | adantl 277 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐴 / 𝐶) = (𝐴 · (𝐶↑𝑐-1))) |
21 | 20 | oveq2d 5934 | . 2 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = (𝐵 logb (𝐴 · (𝐶↑𝑐-1)))) |
22 | simpll 527 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐵 ∈ ℝ+) | |
23 | simplr 528 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐵 # 1) | |
24 | simprr 531 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐶 ∈ ℝ+) | |
25 | rplogbcl 15078 | . . . . 5 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝐶 ∈ ℝ+) → (𝐵 logb 𝐶) ∈ ℝ) | |
26 | 22, 23, 24, 25 | syl3anc 1249 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb 𝐶) ∈ ℝ) |
27 | recn 8005 | . . . 4 ⊢ ((𝐵 logb 𝐶) ∈ ℝ → (𝐵 logb 𝐶) ∈ ℂ) | |
28 | mulm1 8419 | . . . . 5 ⊢ ((𝐵 logb 𝐶) ∈ ℂ → (-1 · (𝐵 logb 𝐶)) = -(𝐵 logb 𝐶)) | |
29 | 28 | oveq2d 5934 | . . . 4 ⊢ ((𝐵 logb 𝐶) ∈ ℂ → ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))) = ((𝐵 logb 𝐴) + -(𝐵 logb 𝐶))) |
30 | 26, 27, 29 | 3syl 17 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶))) = ((𝐵 logb 𝐴) + -(𝐵 logb 𝐶))) |
31 | simprl 529 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → 𝐴 ∈ ℝ+) | |
32 | rplogbcl 15078 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 # 1 ∧ 𝐴 ∈ ℝ+) → (𝐵 logb 𝐴) ∈ ℝ) | |
33 | 22, 23, 31, 32 | syl3anc 1249 | . . . . 5 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb 𝐴) ∈ ℝ) |
34 | 33 | recnd 8048 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb 𝐴) ∈ ℂ) |
35 | 26 | recnd 8048 | . . . 4 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb 𝐶) ∈ ℂ) |
36 | 34, 35 | negsubd 8336 | . . 3 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) + -(𝐵 logb 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶))) |
37 | 30, 36 | eqtr2d 2227 | . 2 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → ((𝐵 logb 𝐴) − (𝐵 logb 𝐶)) = ((𝐵 logb 𝐴) + (-1 · (𝐵 logb 𝐶)))) |
38 | 3, 21, 37 | 3eqtr4d 2236 | 1 ⊢ (((𝐵 ∈ ℝ+ ∧ 𝐵 # 1) ∧ (𝐴 ∈ ℝ+ ∧ 𝐶 ∈ ℝ+)) → (𝐵 logb (𝐴 / 𝐶)) = ((𝐵 logb 𝐴) − (𝐵 logb 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 (class class class)co 5918 ℂcc 7870 ℝcr 7871 0cc0 7872 1c1 7873 + caddc 7875 · cmul 7877 − cmin 8190 -cneg 8191 # cap 8600 / cdiv 8691 ℝ+crp 9719 ↑𝑐ccxp 14992 logb clogb 15075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 ax-caucvg 7992 ax-pre-suploc 7993 ax-addf 7994 ax-mulf 7995 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-disj 4007 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-isom 5263 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-of 6130 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-frec 6444 df-1o 6469 df-oadd 6473 df-er 6587 df-map 6704 df-pm 6705 df-en 6795 df-dom 6796 df-fin 6797 df-sup 7043 df-inf 7044 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-xneg 9838 df-xadd 9839 df-ioo 9958 df-ico 9960 df-icc 9961 df-fz 10075 df-fzo 10209 df-seqfrec 10519 df-exp 10610 df-fac 10797 df-bc 10819 df-ihash 10847 df-shft 10959 df-cj 10986 df-re 10987 df-im 10988 df-rsqrt 11142 df-abs 11143 df-clim 11422 df-sumdc 11497 df-ef 11791 df-e 11792 df-rest 12852 df-topgen 12871 df-psmet 14039 df-xmet 14040 df-met 14041 df-bl 14042 df-mopn 14043 df-top 14166 df-topon 14179 df-bases 14211 df-ntr 14264 df-cn 14356 df-cnp 14357 df-tx 14421 df-cncf 14726 df-limced 14810 df-dvap 14811 df-relog 14993 df-rpcxp 14994 df-logb 15076 |
This theorem is referenced by: logbrec 15092 |
Copyright terms: Public domain | W3C validator |