Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon1bbiidc GIF version

Theorem necon1bbiidc 2344
 Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon1bbiidc.1 (DECID 𝐴 = 𝐵 → (𝐴𝐵𝜑))
Assertion
Ref Expression
necon1bbiidc (DECID 𝐴 = 𝐵 → (¬ 𝜑𝐴 = 𝐵))

Proof of Theorem necon1bbiidc
StepHypRef Expression
1 df-ne 2284 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 necon1bbiidc.1 . . 3 (DECID 𝐴 = 𝐵 → (𝐴𝐵𝜑))
31, 2syl5bbr 193 . 2 (DECID 𝐴 = 𝐵 → (¬ 𝐴 = 𝐵𝜑))
43con1biidc 845 1 (DECID 𝐴 = 𝐵 → (¬ 𝜑𝐴 = 𝐵))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 104  DECID wdc 802   = wceq 1314   ≠ wne 2283 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681 This theorem depends on definitions:  df-bi 116  df-dc 803  df-ne 2284 This theorem is referenced by:  necon2bbiidc  2348
 Copyright terms: Public domain W3C validator