Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr3id | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3id.1 | ⊢ (𝜓 ↔ 𝜑) |
bitr3id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr3id | ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3id.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 131 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | bitr3id.2 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | syl5bb 191 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr3g 221 ianordc 889 19.16 1543 19.19 1654 cbvab 2290 necon1bbiidc 2397 rspc2gv 2842 elabgt 2867 sbceq1a 2960 sbcralt 3027 sbcrext 3028 sbccsbg 3074 sbccsb2g 3075 iunpw 4458 tfis 4560 xp11m 5042 ressn 5144 fnssresb 5300 fun11iun 5453 funimass4 5537 dffo4 5633 f1ompt 5636 fliftf 5767 resoprab2 5939 ralrnmpo 5956 rexrnmpo 5957 1stconst 6189 2ndconst 6190 dfsmo2 6255 smoiso 6270 brecop 6591 ixpsnf1o 6702 ac6sfi 6864 ismkvnex 7119 prarloclemn 7440 axcaucvglemres 7840 reapti 8477 indstr 9531 iccneg 9925 sqap0 10521 sqrt00 10982 minclpr 11178 fprodseq 11524 absefib 11711 efieq1re 11712 prmind2 12052 sincosq3sgn 13389 sincosq4sgn 13390 lgsdinn0 13589 pw1nct 13883 iswomninnlem 13928 |
Copyright terms: Public domain | W3C validator |