![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3id | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3id.1 | ⊢ (𝜓 ↔ 𝜑) |
bitr3id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr3id | ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3id.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 132 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | bitr3id.2 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bitrid 192 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitr3g 222 imbibi 252 ianordc 900 19.16 1566 19.19 1677 cbvab 2313 necon1bbiidc 2421 rspc2gv 2868 elabgt 2893 sbceq1a 2987 sbcralt 3054 sbcrext 3055 sbccsbg 3101 sbccsb2g 3102 iunpw 4498 tfis 4600 xp11m 5085 ressn 5187 fnssresb 5347 fun11iun 5501 funimass4 5587 dffo4 5685 f1ompt 5688 fliftf 5821 resoprab2 5994 ralrnmpo 6012 rexrnmpo 6013 1stconst 6247 2ndconst 6248 dfsmo2 6313 smoiso 6328 brecop 6652 ixpsnf1o 6763 ac6sfi 6927 ismkvnex 7184 nninfwlporlemd 7201 prarloclemn 7529 axcaucvglemres 7929 reapti 8567 indstr 9625 iccneg 10021 sqap0 10621 sqrt00 11084 minclpr 11280 fprodseq 11626 absefib 11813 efieq1re 11814 prmind2 12155 gsumval2 12875 eqgval 13179 sincosq3sgn 14726 sincosq4sgn 14727 lgsdinn0 14927 pw1nct 15231 iswomninnlem 15276 |
Copyright terms: Public domain | W3C validator |