Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr3id | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3id.1 | ⊢ (𝜓 ↔ 𝜑) |
bitr3id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr3id | ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3id.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 131 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | bitr3id.2 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | syl5bb 191 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitr3g 221 ianordc 894 19.16 1548 19.19 1659 cbvab 2294 necon1bbiidc 2401 rspc2gv 2846 elabgt 2871 sbceq1a 2964 sbcralt 3031 sbcrext 3032 sbccsbg 3078 sbccsb2g 3079 iunpw 4465 tfis 4567 xp11m 5049 ressn 5151 fnssresb 5310 fun11iun 5463 funimass4 5547 dffo4 5644 f1ompt 5647 fliftf 5778 resoprab2 5950 ralrnmpo 5967 rexrnmpo 5968 1stconst 6200 2ndconst 6201 dfsmo2 6266 smoiso 6281 brecop 6603 ixpsnf1o 6714 ac6sfi 6876 ismkvnex 7131 nninfwlporlemd 7148 prarloclemn 7461 axcaucvglemres 7861 reapti 8498 indstr 9552 iccneg 9946 sqap0 10542 sqrt00 11004 minclpr 11200 fprodseq 11546 absefib 11733 efieq1re 11734 prmind2 12074 sincosq3sgn 13543 sincosq4sgn 13544 lgsdinn0 13743 pw1nct 14036 iswomninnlem 14081 |
Copyright terms: Public domain | W3C validator |