| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3id | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3id.1 | ⊢ (𝜓 ↔ 𝜑) |
| bitr3id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr3id | ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3id.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | bitr3id.2 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitrid 192 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr3g 222 imbibi 252 ianordc 900 19.16 1569 19.19 1680 cbvab 2320 necon1bbiidc 2428 rspc2gv 2880 elabgt 2905 sbceq1a 2999 sbcralt 3066 sbcrext 3067 sbccsbg 3113 sbccsb2g 3114 iunpw 4516 tfis 4620 xp11m 5109 ressn 5211 fnssresb 5373 fun11iun 5528 funimass4 5614 dffo4 5713 f1ompt 5716 fliftf 5849 resoprab2 6023 ralrnmpo 6041 rexrnmpo 6042 1stconst 6288 2ndconst 6289 dfsmo2 6354 smoiso 6369 brecop 6693 ixpsnf1o 6804 ac6sfi 6968 ismkvnex 7230 nninfwlporlemd 7247 prarloclemn 7585 axcaucvglemres 7985 reapti 8625 indstr 9686 iccneg 10083 sqap0 10717 wrdmap 10985 sqrt00 11224 minclpr 11421 fprodseq 11767 absefib 11955 efieq1re 11956 prmind2 12315 gsumval2 13101 eqgval 13431 isnzr2 13818 sincosq3sgn 15150 sincosq4sgn 15151 fsumdvdsmul 15313 lgsdinn0 15375 pw1nct 15736 iswomninnlem 15784 |
| Copyright terms: Public domain | W3C validator |