| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3id | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3id.1 | ⊢ (𝜓 ↔ 𝜑) |
| bitr3id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr3id | ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3id.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | bitr3id.2 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitrid 192 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr3g 222 imbibi 252 ianordc 900 19.16 1569 19.19 1680 cbvab 2320 necon1bbiidc 2428 rspc2gv 2880 elabgt 2905 sbceq1a 2999 sbcralt 3066 sbcrext 3067 sbccsbg 3113 sbccsb2g 3114 iunpw 4515 tfis 4619 xp11m 5108 ressn 5210 fnssresb 5370 fun11iun 5525 funimass4 5611 dffo4 5710 f1ompt 5713 fliftf 5846 resoprab2 6019 ralrnmpo 6037 rexrnmpo 6038 1stconst 6279 2ndconst 6280 dfsmo2 6345 smoiso 6360 brecop 6684 ixpsnf1o 6795 ac6sfi 6959 ismkvnex 7221 nninfwlporlemd 7238 prarloclemn 7566 axcaucvglemres 7966 reapti 8606 indstr 9667 iccneg 10064 sqap0 10698 wrdmap 10966 sqrt00 11205 minclpr 11402 fprodseq 11748 absefib 11936 efieq1re 11937 prmind2 12288 gsumval2 13040 eqgval 13353 isnzr2 13740 sincosq3sgn 15064 sincosq4sgn 15065 fsumdvdsmul 15227 lgsdinn0 15289 pw1nct 15647 iswomninnlem 15693 |
| Copyright terms: Public domain | W3C validator |