![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr3id | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr3id.1 | ⊢ (𝜓 ↔ 𝜑) |
bitr3id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
bitr3id | ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr3id.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 132 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | bitr3id.2 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bitrid 192 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitr3g 222 imbibi 252 ianordc 900 19.16 1566 19.19 1677 cbvab 2317 necon1bbiidc 2425 rspc2gv 2876 elabgt 2901 sbceq1a 2995 sbcralt 3062 sbcrext 3063 sbccsbg 3109 sbccsb2g 3110 iunpw 4511 tfis 4615 xp11m 5104 ressn 5206 fnssresb 5366 fun11iun 5521 funimass4 5607 dffo4 5706 f1ompt 5709 fliftf 5842 resoprab2 6015 ralrnmpo 6033 rexrnmpo 6034 1stconst 6274 2ndconst 6275 dfsmo2 6340 smoiso 6355 brecop 6679 ixpsnf1o 6790 ac6sfi 6954 ismkvnex 7214 nninfwlporlemd 7231 prarloclemn 7559 axcaucvglemres 7959 reapti 8598 indstr 9658 iccneg 10055 sqap0 10677 wrdmap 10945 sqrt00 11184 minclpr 11380 fprodseq 11726 absefib 11914 efieq1re 11915 prmind2 12258 gsumval2 12980 eqgval 13293 isnzr2 13680 sincosq3sgn 14963 sincosq4sgn 14964 lgsdinn0 15164 pw1nct 15493 iswomninnlem 15539 |
Copyright terms: Public domain | W3C validator |