| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3id | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3id.1 | ⊢ (𝜓 ↔ 𝜑) |
| bitr3id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr3id | ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3id.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | bitr3id.2 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitrid 192 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr3g 222 imbibi 252 ianordc 903 19.16 1581 19.19 1692 cbvab 2333 necon1bbiidc 2441 rspc2gv 2899 elabgt 2924 sbceq1a 3018 sbcralt 3085 sbcrext 3086 sbccsbg 3133 sbccsb2g 3134 iunpw 4548 tfis 4652 xp11m 5143 ressn 5245 fnssresb 5411 fun11iun 5569 funimass4 5657 dffo4 5756 f1ompt 5759 fliftf 5896 resoprab2 6072 ralrnmpo 6090 rexrnmpo 6091 1stconst 6337 2ndconst 6338 dfsmo2 6403 smoiso 6418 brecop 6742 ixpsnf1o 6853 ac6sfi 7028 ismkvnex 7290 nninfwlporlemd 7307 prarloclemn 7654 axcaucvglemres 8054 reapti 8694 indstr 9756 iccneg 10153 sqap0 10795 wrdmap 11069 wrdind 11220 sqrt00 11517 minclpr 11714 fprodseq 12060 absefib 12248 efieq1re 12249 prmind2 12608 gsumval2 13396 eqgval 13726 isnzr2 14113 sincosq3sgn 15467 sincosq4sgn 15468 fsumdvdsmul 15630 lgsdinn0 15692 pw1nct 16280 iswomninnlem 16328 |
| Copyright terms: Public domain | W3C validator |