| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3id | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3id.1 | ⊢ (𝜓 ↔ 𝜑) |
| bitr3id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr3id | ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3id.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | bitr3id.2 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitrid 192 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr3g 222 imbibi 252 ianordc 901 19.16 1579 19.19 1690 cbvab 2330 necon1bbiidc 2438 rspc2gv 2890 elabgt 2915 sbceq1a 3009 sbcralt 3076 sbcrext 3077 sbccsbg 3123 sbccsb2g 3124 iunpw 4531 tfis 4635 xp11m 5126 ressn 5228 fnssresb 5393 fun11iun 5550 funimass4 5636 dffo4 5735 f1ompt 5738 fliftf 5875 resoprab2 6049 ralrnmpo 6067 rexrnmpo 6068 1stconst 6314 2ndconst 6315 dfsmo2 6380 smoiso 6395 brecop 6719 ixpsnf1o 6830 ac6sfi 7002 ismkvnex 7264 nninfwlporlemd 7281 prarloclemn 7619 axcaucvglemres 8019 reapti 8659 indstr 9721 iccneg 10118 sqap0 10758 wrdmap 11032 sqrt00 11395 minclpr 11592 fprodseq 11938 absefib 12126 efieq1re 12127 prmind2 12486 gsumval2 13273 eqgval 13603 isnzr2 13990 sincosq3sgn 15344 sincosq4sgn 15345 fsumdvdsmul 15507 lgsdinn0 15569 pw1nct 16014 iswomninnlem 16062 |
| Copyright terms: Public domain | W3C validator |