| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr3id | GIF version | ||
| Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr3id.1 | ⊢ (𝜓 ↔ 𝜑) |
| bitr3id.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| bitr3id | ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr3id.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 132 | . 2 ⊢ (𝜑 ↔ 𝜓) |
| 3 | bitr3id.2 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bitrid 192 | 1 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitr3g 222 imbibi 252 ianordc 904 19.16 1601 19.19 1712 cbvab 2353 necon1bbiidc 2461 rspc2gv 2919 elabgt 2944 sbceq1a 3038 sbcralt 3105 sbcrext 3106 sbccsbg 3153 sbccsb2g 3154 iunpw 4571 tfis 4675 reldmm 4942 xp11m 5167 ressn 5269 fnssresb 5435 fun11iun 5595 funimass4 5686 dffo4 5785 f1ompt 5788 fliftf 5929 resoprab2 6107 ralrnmpo 6125 rexrnmpo 6126 1stconst 6373 2ndconst 6374 dfsmo2 6439 smoiso 6454 brecop 6780 ixpsnf1o 6891 ac6sfi 7068 ismkvnex 7330 nninfwlporlemd 7347 prarloclemn 7694 axcaucvglemres 8094 reapti 8734 indstr 9796 iccneg 10193 sqap0 10836 wrdmap 11111 wrdind 11262 sqrt00 11559 minclpr 11756 fprodseq 12102 absefib 12290 efieq1re 12291 prmind2 12650 gsumval2 13438 eqgval 13768 isnzr2 14156 sincosq3sgn 15510 sincosq4sgn 15511 fsumdvdsmul 15673 lgsdinn0 15735 pw1nct 16398 iswomninnlem 16447 |
| Copyright terms: Public domain | W3C validator |