| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > or12 | GIF version | ||
| Description: Swap two disjuncts. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
| Ref | Expression |
|---|---|
| or12 | ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.5 766 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) → (𝜓 ∨ (𝜑 ∨ 𝜒))) | |
| 2 | pm1.5 766 | . 2 ⊢ ((𝜓 ∨ (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orass 768 or32 771 or4 772 |
| Copyright terms: Public domain | W3C validator |