Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > or12 | GIF version |
Description: Swap two disjuncts. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Nov-2012.) |
Ref | Expression |
---|---|
or12 | ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.5 760 | . 2 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) → (𝜓 ∨ (𝜑 ∨ 𝜒))) | |
2 | pm1.5 760 | . 2 ⊢ ((𝜓 ∨ (𝜑 ∨ 𝜒)) → (𝜑 ∨ (𝜓 ∨ 𝜒))) | |
3 | 1, 2 | impbii 125 | 1 ⊢ ((𝜑 ∨ (𝜓 ∨ 𝜒)) ↔ (𝜓 ∨ (𝜑 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orass 762 or32 765 or4 766 |
Copyright terms: Public domain | W3C validator |