ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm1.5 GIF version

Theorem pm1.5 765
Description: Axiom *1.5 (Assoc) of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm1.5 ((𝜑 ∨ (𝜓𝜒)) → (𝜓 ∨ (𝜑𝜒)))

Proof of Theorem pm1.5
StepHypRef Expression
1 orc 712 . . 3 (𝜑 → (𝜑𝜒))
21olcd 734 . 2 (𝜑 → (𝜓 ∨ (𝜑𝜒)))
3 olc 711 . . 3 (𝜒 → (𝜑𝜒))
43orim2i 761 . 2 ((𝜓𝜒) → (𝜓 ∨ (𝜑𝜒)))
52, 4jaoi 716 1 ((𝜑 ∨ (𝜓𝜒)) → (𝜓 ∨ (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  or12  766
  Copyright terms: Public domain W3C validator