ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orass GIF version

Theorem orass 772
Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
orass (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))

Proof of Theorem orass
StepHypRef Expression
1 orcom 733 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜒 ∨ (𝜑𝜓)))
2 or12 771 . 2 ((𝜒 ∨ (𝜑𝜓)) ↔ (𝜑 ∨ (𝜒𝜓)))
3 orcom 733 . . 3 ((𝜒𝜓) ↔ (𝜓𝜒))
43orbi2i 767 . 2 ((𝜑 ∨ (𝜒𝜓)) ↔ (𝜑 ∨ (𝜓𝜒)))
51, 2, 43bitri 206 1 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm2.31  773  pm2.32  774  or32  775  or4  776  3orass  1005  dveeq2  1861  dveeq2or  1862  sbequilem  1884  dvelimALT  2061  dvelimfv  2062  dvelimor  2069  unass  3361  ltxr  9967  lcmass  12602
  Copyright terms: Public domain W3C validator