ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orass GIF version

Theorem orass 767
Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
orass (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))

Proof of Theorem orass
StepHypRef Expression
1 orcom 728 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜒 ∨ (𝜑𝜓)))
2 or12 766 . 2 ((𝜒 ∨ (𝜑𝜓)) ↔ (𝜑 ∨ (𝜒𝜓)))
3 orcom 728 . . 3 ((𝜒𝜓) ↔ (𝜓𝜒))
43orbi2i 762 . 2 ((𝜑 ∨ (𝜒𝜓)) ↔ (𝜑 ∨ (𝜓𝜒)))
51, 2, 43bitri 206 1 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm2.31  768  pm2.32  769  or32  770  or4  771  3orass  981  dveeq2  1815  dveeq2or  1816  sbequilem  1838  dvelimALT  2010  dvelimfv  2011  dvelimor  2018  unass  3292  ltxr  9773  lcmass  12079
  Copyright terms: Public domain W3C validator