ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orass GIF version

Theorem orass 757
Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
orass (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))

Proof of Theorem orass
StepHypRef Expression
1 orcom 718 . 2 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜒 ∨ (𝜑𝜓)))
2 or12 756 . 2 ((𝜒 ∨ (𝜑𝜓)) ↔ (𝜑 ∨ (𝜒𝜓)))
3 orcom 718 . . 3 ((𝜒𝜓) ↔ (𝜓𝜒))
43orbi2i 752 . 2 ((𝜑 ∨ (𝜒𝜓)) ↔ (𝜑 ∨ (𝜓𝜒)))
51, 2, 43bitri 205 1 (((𝜑𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm2.31  758  pm2.32  759  or32  760  or4  761  3orass  971  dveeq2  1803  dveeq2or  1804  sbequilem  1826  dvelimALT  1998  dvelimfv  1999  dvelimor  2006  unass  3279  ltxr  9711  lcmass  12017
  Copyright terms: Public domain W3C validator