| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orass | GIF version | ||
| Description: Associative law for disjunction. Theorem *4.33 of [WhiteheadRussell] p. 118. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| orass | ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 730 | . 2 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜒 ∨ (𝜑 ∨ 𝜓))) | |
| 2 | or12 768 | . 2 ⊢ ((𝜒 ∨ (𝜑 ∨ 𝜓)) ↔ (𝜑 ∨ (𝜒 ∨ 𝜓))) | |
| 3 | orcom 730 | . . 3 ⊢ ((𝜒 ∨ 𝜓) ↔ (𝜓 ∨ 𝜒)) | |
| 4 | 3 | orbi2i 764 | . 2 ⊢ ((𝜑 ∨ (𝜒 ∨ 𝜓)) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| 5 | 1, 2, 4 | 3bitri 206 | 1 ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ (𝜓 ∨ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.31 770 pm2.32 771 or32 772 or4 773 3orass 984 dveeq2 1839 dveeq2or 1840 sbequilem 1862 dvelimALT 2039 dvelimfv 2040 dvelimor 2047 unass 3334 ltxr 9917 lcmass 12482 |
| Copyright terms: Public domain | W3C validator |