ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  or4 GIF version

Theorem or4 766
Description: Rearrangement of 4 disjuncts. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
or4 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜓𝜃)))

Proof of Theorem or4
StepHypRef Expression
1 or12 761 . . 3 ((𝜓 ∨ (𝜒𝜃)) ↔ (𝜒 ∨ (𝜓𝜃)))
21orbi2i 757 . 2 ((𝜑 ∨ (𝜓 ∨ (𝜒𝜃))) ↔ (𝜑 ∨ (𝜒 ∨ (𝜓𝜃))))
3 orass 762 . 2 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ (𝜑 ∨ (𝜓 ∨ (𝜒𝜃))))
4 orass 762 . 2 (((𝜑𝜒) ∨ (𝜓𝜃)) ↔ (𝜑 ∨ (𝜒 ∨ (𝜓𝜃))))
52, 3, 43bitr4i 211 1 (((𝜑𝜓) ∨ (𝜒𝜃)) ↔ ((𝜑𝜒) ∨ (𝜓𝜃)))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  or42  767  orordi  768  orordir  769  3or6  1318  swoer  6539  apcotr  8519
  Copyright terms: Public domain W3C validator