ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ori GIF version

Theorem ori 728
Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypothesis
Ref Expression
ori.1 (𝜑𝜓)
Assertion
Ref Expression
ori 𝜑𝜓)

Proof of Theorem ori
StepHypRef Expression
1 ori.1 . 2 (𝜑𝜓)
2 pm2.53 727 . 2 ((𝜑𝜓) → (¬ 𝜑𝜓))
31, 2ax-mp 5 1 𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  3ori  1334  mtpor  1467  ax12  1558  sbal1yz  2052  dvelimALT  2061  dvelimfv  2062
  Copyright terms: Public domain W3C validator