| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ori | GIF version | ||
| Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ori.1 | ⊢ (𝜑 ∨ 𝜓) |
| Ref | Expression |
|---|---|
| ori | ⊢ (¬ 𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ori.1 | . 2 ⊢ (𝜑 ∨ 𝜓) | |
| 2 | pm2.53 723 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3ori 1311 mtpor 1436 ax12 1526 sbal1yz 2020 dvelimALT 2029 dvelimfv 2030 |
| Copyright terms: Public domain | W3C validator |