ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ori GIF version

Theorem ori 675
Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)
Hypothesis
Ref Expression
ori.1 (𝜑𝜓)
Assertion
Ref Expression
ori 𝜑𝜓)

Proof of Theorem ori
StepHypRef Expression
1 ori.1 . 2 (𝜑𝜓)
2 pm2.53 674 . 2 ((𝜑𝜓) → (¬ 𝜑𝜓))
31, 2ax-mp 7 1 𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 578  ax-io 663
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  3ori  1232  mtpor  1357  ax-12  1443  sbal1yz  1920  dvelimALT  1929  dvelimfv  1930
  Copyright terms: Public domain W3C validator