Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ori | GIF version |
Description: Infer implication from disjunction. (Contributed by NM, 11-Jun-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
ori.1 | ⊢ (𝜑 ∨ 𝜓) |
Ref | Expression |
---|---|
ori | ⊢ (¬ 𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ori.1 | . 2 ⊢ (𝜑 ∨ 𝜓) | |
2 | pm2.53 712 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (¬ 𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3ori 1290 mtpor 1415 ax12 1500 sbal1yz 1989 dvelimALT 1998 dvelimfv 1999 |
Copyright terms: Public domain | W3C validator |