Proof of Theorem sbal1yz
| Step | Hyp | Ref
| Expression |
| 1 | | dveeq2or 1830 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 ∨ Ⅎ𝑥 𝑦 = 𝑧) |
| 2 | | equcom 1720 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 ↔ 𝑧 = 𝑦) |
| 3 | 2 | nfbii 1487 |
. . . . . . . 8
⊢
(Ⅎ𝑥 𝑦 = 𝑧 ↔ Ⅎ𝑥 𝑧 = 𝑦) |
| 4 | | 19.21t 1596 |
. . . . . . . 8
⊢
(Ⅎ𝑥 𝑧 = 𝑦 → (∀𝑥(𝑧 = 𝑦 → 𝜑) ↔ (𝑧 = 𝑦 → ∀𝑥𝜑))) |
| 5 | 3, 4 | sylbi 121 |
. . . . . . 7
⊢
(Ⅎ𝑥 𝑦 = 𝑧 → (∀𝑥(𝑧 = 𝑦 → 𝜑) ↔ (𝑧 = 𝑦 → ∀𝑥𝜑))) |
| 6 | 5 | orim2i 762 |
. . . . . 6
⊢
((∀𝑥 𝑥 = 𝑧 ∨ Ⅎ𝑥 𝑦 = 𝑧) → (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥(𝑧 = 𝑦 → 𝜑) ↔ (𝑧 = 𝑦 → ∀𝑥𝜑)))) |
| 7 | 1, 6 | ax-mp 5 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥(𝑧 = 𝑦 → 𝜑) ↔ (𝑧 = 𝑦 → ∀𝑥𝜑))) |
| 8 | 7 | ori 724 |
. . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (∀𝑥(𝑧 = 𝑦 → 𝜑) ↔ (𝑧 = 𝑦 → ∀𝑥𝜑))) |
| 9 | 8 | albidv 1838 |
. . 3
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (∀𝑦∀𝑥(𝑧 = 𝑦 → 𝜑) ↔ ∀𝑦(𝑧 = 𝑦 → ∀𝑥𝜑))) |
| 10 | | alcom 1492 |
. . . 4
⊢
(∀𝑦∀𝑥(𝑧 = 𝑦 → 𝜑) ↔ ∀𝑥∀𝑦(𝑧 = 𝑦 → 𝜑)) |
| 11 | | sb6 1901 |
. . . . . 6
⊢ ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → 𝜑)) |
| 12 | 2 | imbi1i 238 |
. . . . . . 7
⊢ ((𝑦 = 𝑧 → 𝜑) ↔ (𝑧 = 𝑦 → 𝜑)) |
| 13 | 12 | albii 1484 |
. . . . . 6
⊢
(∀𝑦(𝑦 = 𝑧 → 𝜑) ↔ ∀𝑦(𝑧 = 𝑦 → 𝜑)) |
| 14 | 11, 13 | bitri 184 |
. . . . 5
⊢ ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑧 = 𝑦 → 𝜑)) |
| 15 | 14 | albii 1484 |
. . . 4
⊢
(∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦(𝑧 = 𝑦 → 𝜑)) |
| 16 | 10, 15 | bitr4i 187 |
. . 3
⊢
(∀𝑦∀𝑥(𝑧 = 𝑦 → 𝜑) ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |
| 17 | | sb6 1901 |
. . . 4
⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)) |
| 18 | 2 | imbi1i 238 |
. . . . 5
⊢ ((𝑦 = 𝑧 → ∀𝑥𝜑) ↔ (𝑧 = 𝑦 → ∀𝑥𝜑)) |
| 19 | 18 | albii 1484 |
. . . 4
⊢
(∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑) ↔ ∀𝑦(𝑧 = 𝑦 → ∀𝑥𝜑)) |
| 20 | 17, 19 | bitr2i 185 |
. . 3
⊢
(∀𝑦(𝑧 = 𝑦 → ∀𝑥𝜑) ↔ [𝑧 / 𝑦]∀𝑥𝜑) |
| 21 | 9, 16, 20 | 3bitr3g 222 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑧 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑)) |
| 22 | 21 | bicomd 141 |
1
⊢ (¬
∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) |