ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.53 GIF version

Theorem pm2.53 727
Description: Theorem *2.53 of [WhiteheadRussell] p. 107. This holds intuitionistically, although its converse does not (see pm2.54dc 896). (Contributed by NM, 3-Jan-2005.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
pm2.53 ((𝜑𝜓) → (¬ 𝜑𝜓))

Proof of Theorem pm2.53
StepHypRef Expression
1 pm2.24 624 . 2 (𝜑 → (¬ 𝜑𝜓))
2 ax-1 6 . 2 (𝜓 → (¬ 𝜑𝜓))
31, 2jaoi 721 1 ((𝜑𝜓) → (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ori  728  ord  729  orel1  730  pm2.63  805  notnotrdc  848  dfordc  897  pm5.6r  932  xorbin  1426  19.33b2  1675  r19.30dc  2678  onsucelsucexmid  4621  oprabidlem  6031  omnimkv  7319  xnn0nnn0pnf  9441  absle  11595
  Copyright terms: Public domain W3C validator