| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.53 | GIF version | ||
| Description: Theorem *2.53 of [WhiteheadRussell] p. 107. This holds intuitionistically, although its converse does not (see pm2.54dc 896). (Contributed by NM, 3-Jan-2005.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| pm2.53 | ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.24 624 | . 2 ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) | |
| 2 | ax-1 6 | . 2 ⊢ (𝜓 → (¬ 𝜑 → 𝜓)) | |
| 3 | 1, 2 | jaoi 721 | 1 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ori 728 ord 729 orel1 730 pm2.63 805 notnotrdc 848 dfordc 897 pm5.6r 932 xorbin 1426 19.33b2 1675 r19.30dc 2678 onsucelsucexmid 4621 oprabidlem 6031 omnimkv 7319 xnn0nnn0pnf 9441 absle 11595 |
| Copyright terms: Public domain | W3C validator |