ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.53 GIF version

Theorem pm2.53 712
Description: Theorem *2.53 of [WhiteheadRussell] p. 107. This holds intuitionistically, although its converse does not (see pm2.54dc 881). (Contributed by NM, 3-Jan-2005.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
pm2.53 ((𝜑𝜓) → (¬ 𝜑𝜓))

Proof of Theorem pm2.53
StepHypRef Expression
1 pm2.24 611 . 2 (𝜑 → (¬ 𝜑𝜓))
2 ax-1 6 . 2 (𝜓 → (¬ 𝜑𝜓))
31, 2jaoi 706 1 ((𝜑𝜓) → (¬ 𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ori  713  ord  714  orel1  715  pm2.63  790  notnotrdc  833  dfordc  882  pm5.6r  917  xorbin  1374  19.33b2  1617  r19.30dc  2613  onsucelsucexmid  4507  oprabidlem  5873  omnimkv  7120  xnn0nnn0pnf  9190  absle  11031
  Copyright terms: Public domain W3C validator