ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvelimfv GIF version

Theorem dvelimfv 1999
Description: Like dvelimf 2003 but with a distinct variable constraint on 𝑥 and 𝑧. (Contributed by Jim Kingdon, 6-Mar-2018.)
Hypotheses
Ref Expression
dvelimfv.1 (𝜑 → ∀𝑥𝜑)
dvelimfv.2 (𝜓 → ∀𝑧𝜓)
dvelimfv.3 (𝑧 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
dvelimfv (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem dvelimfv
StepHypRef Expression
1 nfnae 1710 . . . 4 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
2 ax12or 1496 . . . . . . . . 9 (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)))
3 orcom 718 . . . . . . . . . 10 ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ↔ (∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) ∨ ∀𝑥 𝑥 = 𝑦))
43orbi2i 752 . . . . . . . . 9 ((∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))) ↔ (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) ∨ ∀𝑥 𝑥 = 𝑦)))
52, 4mpbi 144 . . . . . . . 8 (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) ∨ ∀𝑥 𝑥 = 𝑦))
6 orass 757 . . . . . . . 8 (((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ∨ ∀𝑥 𝑥 = 𝑦) ↔ (∀𝑥 𝑥 = 𝑧 ∨ (∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) ∨ ∀𝑥 𝑥 = 𝑦)))
75, 6mpbir 145 . . . . . . 7 ((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ∨ ∀𝑥 𝑥 = 𝑦)
8 nfae 1707 . . . . . . . . . . 11 𝑥𝑥 𝑥 = 𝑧
9 ax16ALT 1847 . . . . . . . . . . 11 (∀𝑥 𝑥 = 𝑧 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
108, 9nfd 1511 . . . . . . . . . 10 (∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥 𝑧 = 𝑦)
11 dvelimfv.1 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝜑)
1211nfi 1450 . . . . . . . . . . 11 𝑥𝜑
1312a1i 9 . . . . . . . . . 10 (∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥𝜑)
1410, 13nfimd 1573 . . . . . . . . 9 (∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥(𝑧 = 𝑦𝜑))
15 df-nf 1449 . . . . . . . . . 10 (Ⅎ𝑥 𝑧 = 𝑦 ↔ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦))
16 id 19 . . . . . . . . . . 11 (Ⅎ𝑥 𝑧 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦)
1712a1i 9 . . . . . . . . . . 11 (Ⅎ𝑥 𝑧 = 𝑦 → Ⅎ𝑥𝜑)
1816, 17nfimd 1573 . . . . . . . . . 10 (Ⅎ𝑥 𝑧 = 𝑦 → Ⅎ𝑥(𝑧 = 𝑦𝜑))
1915, 18sylbir 134 . . . . . . . . 9 (∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦) → Ⅎ𝑥(𝑧 = 𝑦𝜑))
2014, 19jaoi 706 . . . . . . . 8 ((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) → Ⅎ𝑥(𝑧 = 𝑦𝜑))
2120orim1i 750 . . . . . . 7 (((∀𝑥 𝑥 = 𝑧 ∨ ∀𝑥(𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) ∨ ∀𝑥 𝑥 = 𝑦) → (Ⅎ𝑥(𝑧 = 𝑦𝜑) ∨ ∀𝑥 𝑥 = 𝑦))
227, 21ax-mp 5 . . . . . 6 (Ⅎ𝑥(𝑧 = 𝑦𝜑) ∨ ∀𝑥 𝑥 = 𝑦)
23 orcom 718 . . . . . 6 ((Ⅎ𝑥(𝑧 = 𝑦𝜑) ∨ ∀𝑥 𝑥 = 𝑦) ↔ (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥(𝑧 = 𝑦𝜑)))
2422, 23mpbi 144 . . . . 5 (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥(𝑧 = 𝑦𝜑))
2524ori 713 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(𝑧 = 𝑦𝜑))
261, 25nfald 1748 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑧(𝑧 = 𝑦𝜑))
27 dvelimfv.2 . . . . 5 (𝜓 → ∀𝑧𝜓)
28 dvelimfv.3 . . . . 5 (𝑧 = 𝑦 → (𝜑𝜓))
2927, 28equsalh 1714 . . . 4 (∀𝑧(𝑧 = 𝑦𝜑) ↔ 𝜓)
3029nfbii 1461 . . 3 (Ⅎ𝑥𝑧(𝑧 = 𝑦𝜑) ↔ Ⅎ𝑥𝜓)
3126, 30sylib 121 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)
3231nfrd 1508 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  wo 698  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator