| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.53 | GIF version | ||
| Description: Theorem *5.53 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm5.53 | ⊢ ((((𝜑 ∨ 𝜓) ∨ 𝜒) → 𝜃) ↔ (((𝜑 → 𝜃) ∧ (𝜓 → 𝜃)) ∧ (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaob 711 | . 2 ⊢ ((((𝜑 ∨ 𝜓) ∨ 𝜒) → 𝜃) ↔ (((𝜑 ∨ 𝜓) → 𝜃) ∧ (𝜒 → 𝜃))) | |
| 2 | jaob 711 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → 𝜃) ↔ ((𝜑 → 𝜃) ∧ (𝜓 → 𝜃))) | |
| 3 | 2 | anbi1i 458 | . 2 ⊢ ((((𝜑 ∨ 𝜓) → 𝜃) ∧ (𝜒 → 𝜃)) ↔ (((𝜑 → 𝜃) ∧ (𝜓 → 𝜃)) ∧ (𝜒 → 𝜃))) |
| 4 | 1, 3 | bitri 184 | 1 ⊢ ((((𝜑 ∨ 𝜓) ∨ 𝜒) → 𝜃) ↔ (((𝜑 → 𝜃) ∧ (𝜓 → 𝜃)) ∧ (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |