ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.4 GIF version

Theorem pm2.4 768
Description: Theorem *2.4 of [WhiteheadRussell] p. 106. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.4 ((𝜑 ∨ (𝜑𝜓)) → (𝜑𝜓))

Proof of Theorem pm2.4
StepHypRef Expression
1 orc 702 . 2 (𝜑 → (𝜑𝜓))
2 id 19 . 2 ((𝜑𝜓) → (𝜑𝜓))
31, 2jaoi 706 1 ((𝜑 ∨ (𝜑𝜓)) → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator