| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm4.44 | GIF version | ||
| Description: Theorem *4.44 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm4.44 | ⊢ (𝜑 ↔ (𝜑 ∨ (𝜑 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 713 | . 2 ⊢ (𝜑 → (𝜑 ∨ (𝜑 ∧ 𝜓))) | |
| 2 | id 19 | . . 3 ⊢ (𝜑 → 𝜑) | |
| 3 | simpl 109 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 4 | 2, 3 | jaoi 717 | . 2 ⊢ ((𝜑 ∨ (𝜑 ∧ 𝜓)) → 𝜑) |
| 5 | 1, 4 | impbii 126 | 1 ⊢ (𝜑 ↔ (𝜑 ∨ (𝜑 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |