ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orc GIF version

Theorem orc 717
Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.)
Assertion
Ref Expression
orc (𝜑 → (𝜑𝜓))

Proof of Theorem orc
StepHypRef Expression
1 id 19 . . 3 ((𝜑𝜓) → (𝜑𝜓))
2 jaob 715 . . 3 (((𝜑𝜓) → (𝜑𝜓)) ↔ ((𝜑 → (𝜑𝜓)) ∧ (𝜓 → (𝜑𝜓))))
31, 2mpbi 145 . 2 ((𝜑 → (𝜑𝜓)) ∧ (𝜓 → (𝜑𝜓)))
43simpli 111 1 (𝜑 → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-io 714
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm2.67-2  718  pm1.4  732  orci  736  orcd  738  orcs  740  pm2.45  743  biorfi  751  pm1.5  770  pm2.4  783  pm4.44  784  pm4.78i  787  pm4.45  789  pm3.48  790  pm2.76  813  orabs  819  ordi  821  andi  823  pm4.72  832  biort  834  dcim  846  pm2.54dc  896  pm2.85dc  910  dcor  941  pm5.71dc  967  dedlema  975  3mix1  1190  xoranor  1419  19.33  1530  hbor  1592  nford  1613  19.30dc  1673  19.43  1674  19.32r  1726  moor  2149  r19.32r  2677  ssun1  3367  undif3ss  3465  reuun1  3486  prmg  3789  opthpr  3850  exmidn0m  4285  issod  4410  elelsuc  4500  ordtri2or2exmidlem  4618  regexmidlem1  4625  fununmo  5363  nndceq  6653  nndcel  6654  swoord1  6717  swoord2  6718  exmidontri2or  7436  addlocprlem  7730  msqge0  8771  mulge0  8774  ltleap  8787  nn1m1nn  9136  elnnz  9464  zletric  9498  zlelttric  9499  zmulcl  9508  zdceq  9530  zdcle  9531  zdclt  9532  ltpnf  9984  xrlttri3  10001  xrpnfdc  10046  xrmnfdc  10047  fzdcel  10244  qletric  10469  qlelttric  10470  qdceq  10472  qdclt  10473  qsqeqor  10880  hashfiv01gt1  11012  isum  11904  iprodap  12099  iprodap0  12101  nn0o1gt2  12424  prm23lt5  12794  4sqlem17  12938  gausslemma2dlem0f  15741  bj-trdc  16140  bj-nn0suc0  16337  triap  16427  tridceq  16454
  Copyright terms: Public domain W3C validator