| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orc | GIF version | ||
| Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orc | ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) | |
| 2 | jaob 715 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) ↔ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓)))) | |
| 3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓))) |
| 4 | 3 | simpli 111 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.67-2 718 pm1.4 732 orci 736 orcd 738 orcs 740 pm2.45 743 biorfi 751 pm1.5 770 pm2.4 783 pm4.44 784 pm4.78i 787 pm4.45 789 pm3.48 790 pm2.76 813 orabs 819 ordi 821 andi 823 pm4.72 832 biort 834 dcim 846 pm2.54dc 896 pm2.85dc 910 dcor 941 pm5.71dc 967 dedlema 975 3mix1 1190 xoranor 1419 19.33 1530 hbor 1592 nford 1613 19.30dc 1673 19.43 1674 19.32r 1726 moor 2149 r19.32r 2677 ssun1 3367 undif3ss 3465 reuun1 3486 prmg 3789 opthpr 3850 exmidn0m 4285 issod 4410 elelsuc 4500 ordtri2or2exmidlem 4618 regexmidlem1 4625 fununmo 5363 nndceq 6653 nndcel 6654 swoord1 6717 swoord2 6718 exmidontri2or 7436 addlocprlem 7730 msqge0 8771 mulge0 8774 ltleap 8787 nn1m1nn 9136 elnnz 9464 zletric 9498 zlelttric 9499 zmulcl 9508 zdceq 9530 zdcle 9531 zdclt 9532 ltpnf 9984 xrlttri3 10001 xrpnfdc 10046 xrmnfdc 10047 fzdcel 10244 qletric 10469 qlelttric 10470 qdceq 10472 qdclt 10473 qsqeqor 10880 hashfiv01gt1 11012 isum 11904 iprodap 12099 iprodap0 12101 nn0o1gt2 12424 prm23lt5 12794 4sqlem17 12938 gausslemma2dlem0f 15741 bj-trdc 16140 bj-nn0suc0 16337 triap 16427 tridceq 16454 |
| Copyright terms: Public domain | W3C validator |