| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orc | GIF version | ||
| Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orc | ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) | |
| 2 | jaob 715 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) ↔ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓)))) | |
| 3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓))) |
| 4 | 3 | simpli 111 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.67-2 718 pm1.4 732 orci 736 orcd 738 orcs 740 pm2.45 743 biorfi 751 pm1.5 770 pm2.4 783 pm4.44 784 pm4.78i 787 pm4.45 789 pm3.48 790 pm2.76 813 orabs 819 ordi 821 andi 823 pm4.72 832 biort 834 dcim 846 pm2.54dc 896 pm2.85dc 910 dcor 941 pm5.71dc 967 dedlema 975 3mix1 1190 xoranor 1419 19.33 1530 hbor 1592 nford 1613 19.30dc 1673 19.43 1674 19.32r 1726 moor 2149 r19.32r 2677 ssun1 3367 undif3ss 3465 reuun1 3486 prmg 3788 opthpr 3849 exmidn0m 4284 issod 4407 elelsuc 4497 ordtri2or2exmidlem 4615 regexmidlem1 4622 fununmo 5359 nndceq 6635 nndcel 6636 swoord1 6699 swoord2 6700 exmidontri2or 7416 addlocprlem 7710 msqge0 8751 mulge0 8754 ltleap 8767 nn1m1nn 9116 elnnz 9444 zletric 9478 zlelttric 9479 zmulcl 9488 zdceq 9510 zdcle 9511 zdclt 9512 ltpnf 9964 xrlttri3 9981 xrpnfdc 10026 xrmnfdc 10027 fzdcel 10224 qletric 10448 qlelttric 10449 qdceq 10451 qdclt 10452 qsqeqor 10859 hashfiv01gt1 10991 isum 11882 iprodap 12077 iprodap0 12079 nn0o1gt2 12402 prm23lt5 12772 4sqlem17 12916 gausslemma2dlem0f 15718 bj-trdc 16046 bj-nn0suc0 16243 triap 16328 tridceq 16355 |
| Copyright terms: Public domain | W3C validator |