| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orc | GIF version | ||
| Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orc | ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) | |
| 2 | jaob 712 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) ↔ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓)))) | |
| 3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓))) |
| 4 | 3 | simpli 111 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.67-2 715 pm1.4 729 orci 733 orcd 735 orcs 737 pm2.45 740 biorfi 748 pm1.5 767 pm2.4 780 pm4.44 781 pm4.78i 784 pm4.45 786 pm3.48 787 pm2.76 810 orabs 816 ordi 818 andi 820 pm4.72 829 biort 831 dcim 843 pm2.54dc 893 pm2.85dc 907 dcor 938 pm5.71dc 964 dedlema 972 3mix1 1169 xoranor 1397 19.33 1508 hbor 1570 nford 1591 19.30dc 1651 19.43 1652 19.32r 1704 moor 2126 r19.32r 2653 ssun1 3338 undif3ss 3436 reuun1 3457 prmg 3757 opthpr 3816 exmidn0m 4250 issod 4371 elelsuc 4461 ordtri2or2exmidlem 4579 regexmidlem1 4586 fununmo 5322 nndceq 6595 nndcel 6596 swoord1 6659 swoord2 6660 exmidontri2or 7368 addlocprlem 7661 msqge0 8702 mulge0 8705 ltleap 8718 nn1m1nn 9067 elnnz 9395 zletric 9429 zlelttric 9430 zmulcl 9439 zdceq 9461 zdcle 9462 zdclt 9463 ltpnf 9915 xrlttri3 9932 xrpnfdc 9977 xrmnfdc 9978 fzdcel 10175 qletric 10397 qlelttric 10398 qdceq 10400 qdclt 10401 qsqeqor 10808 hashfiv01gt1 10940 isum 11746 iprodap 11941 iprodap0 11943 nn0o1gt2 12266 prm23lt5 12636 4sqlem17 12780 gausslemma2dlem0f 15581 bj-trdc 15802 bj-nn0suc0 16000 triap 16083 tridceq 16110 |
| Copyright terms: Public domain | W3C validator |