![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orc | GIF version |
Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
orc | ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) | |
2 | jaob 710 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) ↔ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓)))) | |
3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓))) |
4 | 3 | simpli 111 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm2.67-2 713 pm1.4 727 orci 731 orcd 733 orcs 735 pm2.45 738 biorfi 746 pm1.5 765 pm2.4 778 pm4.44 779 pm4.78i 782 pm4.45 784 pm3.48 785 pm2.76 808 orabs 814 ordi 816 andi 818 pm4.72 827 biort 829 dcim 841 pm2.54dc 891 pm2.85dc 905 dcor 935 pm5.71dc 961 dedlema 969 3mix1 1166 xoranor 1377 19.33 1484 hbor 1546 nford 1567 19.30dc 1627 19.43 1628 19.32r 1680 moor 2097 r19.32r 2623 ssun1 3299 undif3ss 3397 reuun1 3418 prmg 3714 opthpr 3773 exmidn0m 4202 issod 4320 elelsuc 4410 ordtri2or2exmidlem 4526 regexmidlem1 4533 nndceq 6500 nndcel 6501 swoord1 6564 swoord2 6565 exmidontri2or 7242 addlocprlem 7534 msqge0 8573 mulge0 8576 ltleap 8589 nn1m1nn 8937 elnnz 9263 zletric 9297 zlelttric 9298 zmulcl 9306 zdceq 9328 zdcle 9329 zdclt 9330 ltpnf 9780 xrlttri3 9797 xrpnfdc 9842 xrmnfdc 9843 fzdcel 10040 qletric 10244 qlelttric 10245 qdceq 10247 qsqeqor 10631 hashfiv01gt1 10762 isum 11393 iprodap 11588 iprodap0 11590 nn0o1gt2 11910 prm23lt5 12263 bj-trdc 14507 bj-nn0suc0 14705 triap 14780 tridceq 14807 |
Copyright terms: Public domain | W3C validator |