| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orc | GIF version | ||
| Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| orc | ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 19 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) | |
| 2 | jaob 711 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) ↔ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓)))) | |
| 3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓))) |
| 4 | 3 | simpli 111 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.67-2 714 pm1.4 728 orci 732 orcd 734 orcs 736 pm2.45 739 biorfi 747 pm1.5 766 pm2.4 779 pm4.44 780 pm4.78i 783 pm4.45 785 pm3.48 786 pm2.76 809 orabs 815 ordi 817 andi 819 pm4.72 828 biort 830 dcim 842 pm2.54dc 892 pm2.85dc 906 dcor 937 pm5.71dc 963 dedlema 971 3mix1 1168 xoranor 1388 19.33 1498 hbor 1560 nford 1581 19.30dc 1641 19.43 1642 19.32r 1694 moor 2116 r19.32r 2643 ssun1 3327 undif3ss 3425 reuun1 3446 prmg 3744 opthpr 3803 exmidn0m 4235 issod 4355 elelsuc 4445 ordtri2or2exmidlem 4563 regexmidlem1 4570 nndceq 6566 nndcel 6567 swoord1 6630 swoord2 6631 exmidontri2or 7328 addlocprlem 7621 msqge0 8662 mulge0 8665 ltleap 8678 nn1m1nn 9027 elnnz 9355 zletric 9389 zlelttric 9390 zmulcl 9398 zdceq 9420 zdcle 9421 zdclt 9422 ltpnf 9874 xrlttri3 9891 xrpnfdc 9936 xrmnfdc 9937 fzdcel 10134 qletric 10350 qlelttric 10351 qdceq 10353 qdclt 10354 qsqeqor 10761 hashfiv01gt1 10893 isum 11569 iprodap 11764 iprodap0 11766 nn0o1gt2 12089 prm23lt5 12459 4sqlem17 12603 gausslemma2dlem0f 15403 bj-trdc 15506 bj-nn0suc0 15704 triap 15786 tridceq 15813 |
| Copyright terms: Public domain | W3C validator |