![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orc | GIF version |
Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
orc | ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) | |
2 | jaob 710 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) ↔ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓)))) | |
3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓))) |
4 | 3 | simpli 111 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm2.67-2 713 pm1.4 727 orci 731 orcd 733 orcs 735 pm2.45 738 biorfi 746 pm1.5 765 pm2.4 778 pm4.44 779 pm4.78i 782 pm4.45 784 pm3.48 785 pm2.76 808 orabs 814 ordi 816 andi 818 pm4.72 827 biort 829 dcim 841 pm2.54dc 891 pm2.85dc 905 dcor 935 pm5.71dc 961 dedlema 969 3mix1 1166 xoranor 1377 19.33 1484 hbor 1546 nford 1567 19.30dc 1627 19.43 1628 19.32r 1680 moor 2097 r19.32r 2623 ssun1 3300 undif3ss 3398 reuun1 3419 prmg 3715 opthpr 3774 exmidn0m 4203 issod 4321 elelsuc 4411 ordtri2or2exmidlem 4527 regexmidlem1 4534 nndceq 6503 nndcel 6504 swoord1 6567 swoord2 6568 exmidontri2or 7245 addlocprlem 7537 msqge0 8576 mulge0 8579 ltleap 8592 nn1m1nn 8940 elnnz 9266 zletric 9300 zlelttric 9301 zmulcl 9309 zdceq 9331 zdcle 9332 zdclt 9333 ltpnf 9783 xrlttri3 9800 xrpnfdc 9845 xrmnfdc 9846 fzdcel 10043 qletric 10247 qlelttric 10248 qdceq 10250 qsqeqor 10634 hashfiv01gt1 10765 isum 11396 iprodap 11591 iprodap0 11593 nn0o1gt2 11913 prm23lt5 12266 bj-trdc 14665 bj-nn0suc0 14863 triap 14939 tridceq 14966 |
Copyright terms: Public domain | W3C validator |