![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orc | GIF version |
Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
orc | ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) | |
2 | jaob 711 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) ↔ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓)))) | |
3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓))) |
4 | 3 | simpli 111 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm2.67-2 714 pm1.4 728 orci 732 orcd 734 orcs 736 pm2.45 739 biorfi 747 pm1.5 766 pm2.4 779 pm4.44 780 pm4.78i 783 pm4.45 785 pm3.48 786 pm2.76 809 orabs 815 ordi 817 andi 819 pm4.72 828 biort 830 dcim 842 pm2.54dc 892 pm2.85dc 906 dcor 937 pm5.71dc 963 dedlema 971 3mix1 1168 xoranor 1388 19.33 1495 hbor 1557 nford 1578 19.30dc 1638 19.43 1639 19.32r 1691 moor 2113 r19.32r 2640 ssun1 3323 undif3ss 3421 reuun1 3442 prmg 3740 opthpr 3799 exmidn0m 4231 issod 4351 elelsuc 4441 ordtri2or2exmidlem 4559 regexmidlem1 4566 nndceq 6554 nndcel 6555 swoord1 6618 swoord2 6619 exmidontri2or 7305 addlocprlem 7597 msqge0 8637 mulge0 8640 ltleap 8653 nn1m1nn 9002 elnnz 9330 zletric 9364 zlelttric 9365 zmulcl 9373 zdceq 9395 zdcle 9396 zdclt 9397 ltpnf 9849 xrlttri3 9866 xrpnfdc 9911 xrmnfdc 9912 fzdcel 10109 qletric 10314 qlelttric 10315 qdceq 10317 qdclt 10318 qsqeqor 10724 hashfiv01gt1 10856 isum 11531 iprodap 11726 iprodap0 11728 nn0o1gt2 12049 prm23lt5 12404 4sqlem17 12548 gausslemma2dlem0f 15211 bj-trdc 15314 bj-nn0suc0 15512 triap 15589 tridceq 15616 |
Copyright terms: Public domain | W3C validator |