![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orc | GIF version |
Description: Introduction of a disjunct. Theorem *2.2 of [WhiteheadRussell] p. 104. (Contributed by NM, 30-Aug-1993.) (Revised by NM, 31-Jan-2015.) |
Ref | Expression |
---|---|
orc | ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) | |
2 | jaob 711 | . . 3 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜓)) ↔ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓)))) | |
3 | 1, 2 | mpbi 145 | . 2 ⊢ ((𝜑 → (𝜑 ∨ 𝜓)) ∧ (𝜓 → (𝜑 ∨ 𝜓))) |
4 | 3 | simpli 111 | 1 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm2.67-2 714 pm1.4 728 orci 732 orcd 734 orcs 736 pm2.45 739 biorfi 747 pm1.5 766 pm2.4 779 pm4.44 780 pm4.78i 783 pm4.45 785 pm3.48 786 pm2.76 809 orabs 815 ordi 817 andi 819 pm4.72 828 biort 830 dcim 842 pm2.54dc 892 pm2.85dc 906 dcor 937 pm5.71dc 963 dedlema 971 3mix1 1168 xoranor 1388 19.33 1495 hbor 1557 nford 1578 19.30dc 1638 19.43 1639 19.32r 1691 moor 2113 r19.32r 2640 ssun1 3322 undif3ss 3420 reuun1 3441 prmg 3739 opthpr 3798 exmidn0m 4230 issod 4350 elelsuc 4440 ordtri2or2exmidlem 4558 regexmidlem1 4565 nndceq 6552 nndcel 6553 swoord1 6616 swoord2 6617 exmidontri2or 7303 addlocprlem 7595 msqge0 8635 mulge0 8638 ltleap 8651 nn1m1nn 9000 elnnz 9327 zletric 9361 zlelttric 9362 zmulcl 9370 zdceq 9392 zdcle 9393 zdclt 9394 ltpnf 9846 xrlttri3 9863 xrpnfdc 9908 xrmnfdc 9909 fzdcel 10106 qletric 10311 qlelttric 10312 qdceq 10314 qdclt 10315 qsqeqor 10721 hashfiv01gt1 10853 isum 11528 iprodap 11723 iprodap0 11725 nn0o1gt2 12046 prm23lt5 12401 4sqlem17 12545 gausslemma2dlem0f 15170 bj-trdc 15244 bj-nn0suc0 15442 triap 15519 tridceq 15546 |
Copyright terms: Public domain | W3C validator |