| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm2.64 | GIF version | ||
| Description: Theorem *2.64 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm2.64 | ⊢ ((𝜑 ∨ 𝜓) → ((𝜑 ∨ ¬ 𝜓) → 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-1 6 | . . 3 ⊢ (𝜑 → ((𝜑 ∨ 𝜓) → 𝜑)) | |
| 2 | orel2 727 | . . 3 ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓) → 𝜑)) | |
| 3 | 1, 2 | jaoi 717 | . 2 ⊢ ((𝜑 ∨ ¬ 𝜓) → ((𝜑 ∨ 𝜓) → 𝜑)) | 
| 4 | 3 | com12 30 | 1 ⊢ ((𝜑 ∨ 𝜓) → ((𝜑 ∨ ¬ 𝜓) → 𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |