| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orel2 | GIF version | ||
| Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
| Ref | Expression |
|---|---|
| orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 21 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
| 2 | pm2.21 618 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | jaod 719 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: biorfi 748 pm2.64 803 stdcn 849 pm5.71dc 964 ecased 1362 19.30dc 1651 dveeq2 1839 prel12 3814 funun 5320 fnpr2ob 13216 |
| Copyright terms: Public domain | W3C validator |