![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm3.1 | GIF version |
Description: Theorem *3.1 of [WhiteheadRussell] p. 111. The converse holds for decidable propositions, as seen at anordc 902. (Contributed by NM, 3-Jan-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm3.1 | ⊢ ((𝜑 ∧ 𝜓) → ¬ (¬ 𝜑 ∨ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.14 705 | . 2 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) | |
2 | 1 | con2i 592 | 1 ⊢ ((𝜑 ∧ 𝜓) → ¬ (¬ 𝜑 ∨ ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∨ wo 664 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: inssun 3239 |
Copyright terms: Public domain | W3C validator |