| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2i | GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2i | ⊢ (𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | 1, 2 | nsyl3 627 | 1 ⊢ (𝜓 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
| This theorem is referenced by: nsyl 629 notnot 630 imanim 690 imnan 692 pm4.53r 753 ioran 754 pm3.1 756 oranim 783 xornbi 1406 exalim 1526 exnalim 1670 festino 2161 calemes 2171 fresison 2173 calemos 2174 fesapo 2175 nner 2381 necon2ai 2431 necon2bi 2432 neneqad 2456 ralexim 2499 rexalim 2500 eueq3dc 2948 elndif 3298 ssddif 3408 unssdif 3409 n0i 3467 preleq 4607 dcextest 4633 dmsn0el 5157 funtpg 5330 ftpg 5775 acexmidlemab 5945 reldmtpos 6346 nntri2 6587 nntri3 6590 nndceq 6592 inffiexmid 7010 ctssdccl 7220 mkvprop 7267 elni2 7434 renfdisj 8139 sup3exmid 9037 fzdisj 10181 sumrbdclem 11732 prodrbdclem 11926 lgsval2lem 15531 |
| Copyright terms: Public domain | W3C validator |