Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > con2i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
con2i | ⊢ (𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | 1, 2 | nsyl3 616 | 1 ⊢ (𝜓 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 604 ax-in2 605 |
This theorem is referenced by: nsyl 618 notnot 619 imanim 678 imnan 680 pm4.53r 741 ioran 742 pm3.1 744 oranim 771 xornbi 1376 exalim 1490 exnalim 1634 festino 2120 calemes 2130 fresison 2132 calemos 2133 fesapo 2134 nner 2340 necon2ai 2390 necon2bi 2391 neneqad 2415 ralexim 2458 rexalim 2459 eueq3dc 2900 elndif 3246 ssddif 3356 unssdif 3357 n0i 3414 preleq 4532 dcextest 4558 dmsn0el 5073 funtpg 5239 ftpg 5669 acexmidlemab 5836 reldmtpos 6221 nntri2 6462 nntri3 6465 nndceq 6467 inffiexmid 6872 ctssdccl 7076 mkvprop 7122 elni2 7255 renfdisj 7958 sup3exmid 8852 fzdisj 9987 sumrbdclem 11318 prodrbdclem 11512 lgsval2lem 13551 |
Copyright terms: Public domain | W3C validator |