![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con2i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
con2i | ⊢ (𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | 1, 2 | nsyl3 627 | 1 ⊢ (𝜓 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 |
This theorem is referenced by: nsyl 629 notnot 630 imanim 689 imnan 691 pm4.53r 752 ioran 753 pm3.1 755 oranim 782 xornbi 1397 exalim 1513 exnalim 1657 festino 2148 calemes 2158 fresison 2160 calemos 2161 fesapo 2162 nner 2368 necon2ai 2418 necon2bi 2419 neneqad 2443 ralexim 2486 rexalim 2487 eueq3dc 2934 elndif 3283 ssddif 3393 unssdif 3394 n0i 3452 preleq 4587 dcextest 4613 dmsn0el 5135 funtpg 5305 ftpg 5742 acexmidlemab 5912 reldmtpos 6306 nntri2 6547 nntri3 6550 nndceq 6552 inffiexmid 6962 ctssdccl 7170 mkvprop 7217 elni2 7374 renfdisj 8079 sup3exmid 8976 fzdisj 10118 sumrbdclem 11520 prodrbdclem 11714 lgsval2lem 15126 |
Copyright terms: Public domain | W3C validator |