| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > con2i | GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| con2i.a | ⊢ (𝜑 → ¬ 𝜓) | 
| Ref | Expression | 
|---|---|
| con2i | ⊢ (𝜓 → ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | 1, 2 | nsyl3 627 | 1 ⊢ (𝜓 → ¬ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 615 ax-in2 616 | 
| This theorem is referenced by: nsyl 629 notnot 630 imanim 689 imnan 691 pm4.53r 752 ioran 753 pm3.1 755 oranim 782 xornbi 1397 exalim 1516 exnalim 1660 festino 2151 calemes 2161 fresison 2163 calemos 2164 fesapo 2165 nner 2371 necon2ai 2421 necon2bi 2422 neneqad 2446 ralexim 2489 rexalim 2490 eueq3dc 2938 elndif 3287 ssddif 3397 unssdif 3398 n0i 3456 preleq 4591 dcextest 4617 dmsn0el 5139 funtpg 5309 ftpg 5746 acexmidlemab 5916 reldmtpos 6311 nntri2 6552 nntri3 6555 nndceq 6557 inffiexmid 6967 ctssdccl 7177 mkvprop 7224 elni2 7381 renfdisj 8086 sup3exmid 8984 fzdisj 10127 sumrbdclem 11542 prodrbdclem 11736 lgsval2lem 15251 | 
| Copyright terms: Public domain | W3C validator |