![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > con2i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
Ref | Expression |
---|---|
con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
con2i | ⊢ (𝜓 → ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | 1, 2 | nsyl3 598 | 1 ⊢ (𝜓 → ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-in1 586 ax-in2 587 |
This theorem is referenced by: nsyl 600 notnot 601 imanim 660 imnan 662 pm4.53r 723 ioran 724 pm3.1 726 oranim 753 xornbi 1345 exalim 1459 exnalim 1606 festino 2079 calemes 2089 fresison 2091 calemos 2092 fesapo 2093 nner 2284 necon2ai 2334 necon2bi 2335 neneqad 2359 ralexim 2401 rexalim 2402 eueq3dc 2825 elndif 3164 ssddif 3274 unssdif 3275 n0i 3332 preleq 4428 dcextest 4453 dmsn0el 4964 funtpg 5130 ftpg 5556 acexmidlemab 5720 reldmtpos 6102 nntri2 6342 nntri3 6345 nndceq 6347 inffiexmid 6751 ctssdccl 6946 mkvprop 6979 elni2 7064 renfdisj 7742 sup3exmid 8619 fzdisj 9719 sumrbdclem 11031 |
Copyright terms: Public domain | W3C validator |