| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2i | GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2i | ⊢ (𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | 1, 2 | nsyl3 629 | 1 ⊢ (𝜓 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: nsyl 631 notnot 632 imanim 692 imnan 694 pm4.53r 756 ioran 757 pm3.1 759 oranim 786 xornbi 1428 exalim 1548 exnalim 1692 festino 2184 calemes 2194 fresison 2196 calemos 2197 fesapo 2198 nner 2404 necon2ai 2454 necon2bi 2455 neneqad 2479 ralexim 2522 rexalim 2523 eueq3dc 2977 elndif 3328 ssddif 3438 unssdif 3439 n0i 3497 preleq 4647 dcextest 4673 dmsn0el 5198 funtpg 5372 ftpg 5827 acexmidlemab 6001 reldmtpos 6405 nntri2 6648 nntri3 6651 nndceq 6653 inffiexmid 7076 ctssdccl 7286 mkvprop 7333 elni2 7509 renfdisj 8214 sup3exmid 9112 fzdisj 10256 sumrbdclem 11896 prodrbdclem 12090 lgsval2lem 15697 g0wlk0 16091 |
| Copyright terms: Public domain | W3C validator |