| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > con2i | GIF version | ||
| Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 13-Jun-2013.) |
| Ref | Expression |
|---|---|
| con2i.a | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| con2i | ⊢ (𝜓 → ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con2i.a | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | 1, 2 | nsyl3 629 | 1 ⊢ (𝜓 → ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in1 617 ax-in2 618 |
| This theorem is referenced by: nsyl 631 notnot 632 imanim 692 imnan 694 pm4.53r 755 ioran 756 pm3.1 758 oranim 785 xornbi 1408 exalim 1528 exnalim 1672 festino 2164 calemes 2174 fresison 2176 calemos 2177 fesapo 2178 nner 2384 necon2ai 2434 necon2bi 2435 neneqad 2459 ralexim 2502 rexalim 2503 eueq3dc 2957 elndif 3308 ssddif 3418 unssdif 3419 n0i 3477 preleq 4624 dcextest 4650 dmsn0el 5174 funtpg 5348 ftpg 5796 acexmidlemab 5968 reldmtpos 6369 nntri2 6610 nntri3 6613 nndceq 6615 inffiexmid 7036 ctssdccl 7246 mkvprop 7293 elni2 7469 renfdisj 8174 sup3exmid 9072 fzdisj 10216 sumrbdclem 11854 prodrbdclem 12048 lgsval2lem 15654 |
| Copyright terms: Public domain | W3C validator |