| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inssun | GIF version | ||
| Description: Intersection in terms of class difference and union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.) |
| Ref | Expression |
|---|---|
| inssun | ⊢ (𝐴 ∩ 𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.1 756 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ¬ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵)) | |
| 2 | eldifn 3300 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) | |
| 3 | eldifn 3300 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐵) → ¬ 𝑥 ∈ 𝐵) | |
| 4 | 2, 3 | orim12i 761 | . . . . 5 ⊢ ((𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵)) → (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵)) |
| 5 | 1, 4 | nsyl 629 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ¬ (𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵))) |
| 6 | elun 3318 | . . . 4 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ↔ (𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵))) | |
| 7 | 5, 6 | sylnibr 679 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
| 8 | elin 3360 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 9 | vex 2776 | . . . 4 ⊢ 𝑥 ∈ V | |
| 10 | eldif 3179 | . . . 4 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))) | |
| 11 | 9, 10 | mpbiran 943 | . . 3 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
| 12 | 7, 8, 11 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))) |
| 13 | 12 | ssriv 3201 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 710 ∈ wcel 2177 Vcvv 2773 ∖ cdif 3167 ∪ cun 3168 ∩ cin 3169 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |