Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inssun | GIF version |
Description: Intersection in terms of class difference and union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.) |
Ref | Expression |
---|---|
inssun | ⊢ (𝐴 ∩ 𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.1 754 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ¬ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldifn 3256 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) | |
3 | eldifn 3256 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐵) → ¬ 𝑥 ∈ 𝐵) | |
4 | 2, 3 | orim12i 759 | . . . . 5 ⊢ ((𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵)) → (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵)) |
5 | 1, 4 | nsyl 628 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ¬ (𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵))) |
6 | elun 3274 | . . . 4 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ↔ (𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵))) | |
7 | 5, 6 | sylnibr 677 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
8 | elin 3316 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
9 | vex 2738 | . . . 4 ⊢ 𝑥 ∈ V | |
10 | eldif 3136 | . . . 4 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))) | |
11 | 9, 10 | mpbiran 940 | . . 3 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
12 | 7, 8, 11 | 3imtr4i 201 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))) |
13 | 12 | ssriv 3157 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 104 ∨ wo 708 ∈ wcel 2146 Vcvv 2735 ∖ cdif 3124 ∪ cun 3125 ∩ cin 3126 ⊆ wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |