ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssun GIF version

Theorem inssun 3403
Description: Intersection in terms of class difference and union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
Assertion
Ref Expression
inssun (𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))

Proof of Theorem inssun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm3.1 755 . . . . 5 ((𝑥𝐴𝑥𝐵) → ¬ (¬ 𝑥𝐴 ∨ ¬ 𝑥𝐵))
2 eldifn 3286 . . . . . 6 (𝑥 ∈ (V ∖ 𝐴) → ¬ 𝑥𝐴)
3 eldifn 3286 . . . . . 6 (𝑥 ∈ (V ∖ 𝐵) → ¬ 𝑥𝐵)
42, 3orim12i 760 . . . . 5 ((𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵)) → (¬ 𝑥𝐴 ∨ ¬ 𝑥𝐵))
51, 4nsyl 629 . . . 4 ((𝑥𝐴𝑥𝐵) → ¬ (𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵)))
6 elun 3304 . . . 4 (𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ↔ (𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵)))
75, 6sylnibr 678 . . 3 ((𝑥𝐴𝑥𝐵) → ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))
8 elin 3346 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
9 vex 2766 . . . 4 𝑥 ∈ V
10 eldif 3166 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))))
119, 10mpbiran 942 . . 3 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))
127, 8, 113imtr4i 201 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))))
1312ssriv 3187 1 (𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 709  wcel 2167  Vcvv 2763  cdif 3154  cun 3155  cin 3156  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator