ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  inssun GIF version

Theorem inssun 3417
Description: Intersection in terms of class difference and union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
Assertion
Ref Expression
inssun (𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))

Proof of Theorem inssun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pm3.1 756 . . . . 5 ((𝑥𝐴𝑥𝐵) → ¬ (¬ 𝑥𝐴 ∨ ¬ 𝑥𝐵))
2 eldifn 3300 . . . . . 6 (𝑥 ∈ (V ∖ 𝐴) → ¬ 𝑥𝐴)
3 eldifn 3300 . . . . . 6 (𝑥 ∈ (V ∖ 𝐵) → ¬ 𝑥𝐵)
42, 3orim12i 761 . . . . 5 ((𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵)) → (¬ 𝑥𝐴 ∨ ¬ 𝑥𝐵))
51, 4nsyl 629 . . . 4 ((𝑥𝐴𝑥𝐵) → ¬ (𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵)))
6 elun 3318 . . . 4 (𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ↔ (𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵)))
75, 6sylnibr 679 . . 3 ((𝑥𝐴𝑥𝐵) → ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))
8 elin 3360 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
9 vex 2776 . . . 4 𝑥 ∈ V
10 eldif 3179 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))))
119, 10mpbiran 943 . . 3 (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))
127, 8, 113imtr4i 201 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))))
1312ssriv 3201 1 (𝐴𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wo 710  wcel 2177  Vcvv 2773  cdif 3167  cun 3168  cin 3169  wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator