Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inssun | GIF version |
Description: Intersection in terms of class difference and union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.) |
Ref | Expression |
---|---|
inssun | ⊢ (𝐴 ∩ 𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.1 749 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ¬ (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵)) | |
2 | eldifn 3250 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐴) → ¬ 𝑥 ∈ 𝐴) | |
3 | eldifn 3250 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ 𝐵) → ¬ 𝑥 ∈ 𝐵) | |
4 | 2, 3 | orim12i 754 | . . . . 5 ⊢ ((𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵)) → (¬ 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵)) |
5 | 1, 4 | nsyl 623 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ¬ (𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵))) |
6 | elun 3268 | . . . 4 ⊢ (𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) ↔ (𝑥 ∈ (V ∖ 𝐴) ∨ 𝑥 ∈ (V ∖ 𝐵))) | |
7 | 5, 6 | sylnibr 672 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
8 | elin 3310 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
9 | vex 2733 | . . . 4 ⊢ 𝑥 ∈ V | |
10 | eldif 3130 | . . . 4 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))) | |
11 | 9, 10 | mpbiran 935 | . . 3 ⊢ (𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) ↔ ¬ 𝑥 ∈ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
12 | 7, 8, 11 | 3imtr4i 200 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) → 𝑥 ∈ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵)))) |
13 | 12 | ssriv 3151 | 1 ⊢ (𝐴 ∩ 𝐵) ⊆ (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 103 ∨ wo 703 ∈ wcel 2141 Vcvv 2730 ∖ cdif 3118 ∪ cun 3119 ∩ cin 3120 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |