ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jao GIF version

Theorem jao 705
Description: Disjunction of antecedents. Compare Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 4-Apr-2013.)
Assertion
Ref Expression
jao ((𝜑𝜓) → ((𝜒𝜓) → ((𝜑𝜒) → 𝜓)))

Proof of Theorem jao
StepHypRef Expression
1 pm3.44 668 . 2 (((𝜑𝜓) ∧ (𝜒𝜓)) → ((𝜑𝜒) → 𝜓))
21ex 113 1 ((𝜑𝜓) → ((𝜒𝜓) → ((𝜑𝜒) → 𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 662
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  3jao  1235  suctr  4224
  Copyright terms: Public domain W3C validator