 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  anordc GIF version

Theorem anordc 923
 Description: Conjunction in terms of disjunction (DeMorgan's law). Theorem *4.5 of [WhiteheadRussell] p. 120, but where the propositions are decidable. The forward direction, pm3.1 726, holds for all propositions, but the equivalence only holds given decidability. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
anordc (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓))))

Proof of Theorem anordc
StepHypRef Expression
1 dcan 901 . 2 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
2 ianordc 867 . . . . 5 (DECID 𝜑 → (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)))
32bicomd 140 . . . 4 (DECID 𝜑 → ((¬ 𝜑 ∨ ¬ 𝜓) ↔ ¬ (𝜑𝜓)))
43a1d 22 . . 3 (DECID 𝜑 → (DECID (𝜑𝜓) → ((¬ 𝜑 ∨ ¬ 𝜓) ↔ ¬ (𝜑𝜓))))
54con2biddc 848 . 2 (DECID 𝜑 → (DECID (𝜑𝜓) → ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓))))
61, 5syld 45 1 (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 680  DECID wdc 802 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681 This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803 This theorem is referenced by:  pm3.11dc  924  dn1dc  927
 Copyright terms: Public domain W3C validator