Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anordc | GIF version |
Description: Conjunction in terms of disjunction (DeMorgan's law). Theorem *4.5 of [WhiteheadRussell] p. 120, but where the propositions are decidable. The forward direction, pm3.1 754, holds for all propositions, but the equivalence only holds given decidability. (Contributed by Jim Kingdon, 21-Apr-2018.) |
Ref | Expression |
---|---|
anordc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcan2 934 | . 2 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ∧ 𝜓))) | |
2 | ianordc 899 | . . . . 5 ⊢ (DECID 𝜑 → (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))) | |
3 | 2 | bicomd 141 | . . . 4 ⊢ (DECID 𝜑 → ((¬ 𝜑 ∨ ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓))) |
4 | 3 | a1d 22 | . . 3 ⊢ (DECID 𝜑 → (DECID (𝜑 ∧ 𝜓) → ((¬ 𝜑 ∨ ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)))) |
5 | 4 | con2biddc 880 | . 2 ⊢ (DECID 𝜑 → (DECID (𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))) |
6 | 1, 5 | syld 45 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 708 DECID wdc 834 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 |
This theorem is referenced by: pm3.11dc 957 dn1dc 960 |
Copyright terms: Public domain | W3C validator |