Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > anordc | GIF version |
Description: Conjunction in terms of disjunction (DeMorgan's law). Theorem *4.5 of [WhiteheadRussell] p. 120, but where the propositions are decidable. The forward direction, pm3.1 744, holds for all propositions, but the equivalence only holds given decidability. (Contributed by Jim Kingdon, 21-Apr-2018.) |
Ref | Expression |
---|---|
anordc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcan2 924 | . 2 ⊢ (DECID 𝜑 → (DECID 𝜓 → DECID (𝜑 ∧ 𝜓))) | |
2 | ianordc 889 | . . . . 5 ⊢ (DECID 𝜑 → (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))) | |
3 | 2 | bicomd 140 | . . . 4 ⊢ (DECID 𝜑 → ((¬ 𝜑 ∨ ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓))) |
4 | 3 | a1d 22 | . . 3 ⊢ (DECID 𝜑 → (DECID (𝜑 ∧ 𝜓) → ((¬ 𝜑 ∨ ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)))) |
5 | 4 | con2biddc 870 | . 2 ⊢ (DECID 𝜑 → (DECID (𝜑 ∧ 𝜓) → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))) |
6 | 1, 5 | syld 45 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (¬ 𝜑 ∨ ¬ 𝜓)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: pm3.11dc 947 dn1dc 950 |
Copyright terms: Public domain | W3C validator |