| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm3.2an3 | GIF version | ||
| Description: pm3.2 139 for a triple conjunction. (Contributed by Alan Sare, 24-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| pm3.2an3 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.2 139 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → ((𝜑 ∧ 𝜓) ∧ 𝜒))) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → ((𝜑 ∧ 𝜓) ∧ 𝜒)))) | 
| 3 | df-3an 982 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 4 | 3 | bicomi 132 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) | 
| 5 | 2, 4 | syl8ib 166 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: 3exp 1204 | 
| Copyright terms: Public domain | W3C validator |