| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3exp | GIF version | ||
| Description: Exportation inference. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3exp | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2an3 1178 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl8 71 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3expa 1205 3expb 1206 3expia 1207 3expib 1208 3com23 1211 3an1rs 1221 3exp1 1225 3expd 1226 exp5o 1228 syl3an2 1283 syl3an3 1284 syl2an23an 1311 3impexpbicomi 1458 rexlimdv3a 2624 rabssdv 3272 reupick2 3458 ssorduni 4533 tfisi 4633 fvssunirng 5585 f1oiso2 5886 poxp 6308 tfrlem5 6390 nndi 6562 nnmass 6563 findcard 6967 ac6sfi 6977 mulcanpig 7430 divgt0 8927 divge0 8928 uzind 9466 uzind2 9467 facavg 10872 prodfap0 11775 prodfrecap 11776 fprodabs 11846 dvdsmodexp 12025 dvdsaddre2b 12071 dvdsnprmd 12366 prmndvdsfaclt 12397 fermltl 12475 pceu 12537 mulgass2 13738 islss4 14062 rnglidlmcl 14160 fiinopn 14394 neipsm 14544 tpnei 14550 opnneiid 14554 neibl 14881 tgqioo 14945 gausslemma2dlem1a 15453 |
| Copyright terms: Public domain | W3C validator |