| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3exp | GIF version | ||
| Description: Exportation inference. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3exp | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2an3 1178 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl8 71 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3expa 1205 3expb 1206 3expia 1207 3expib 1208 3com23 1211 3an1rs 1221 3exp1 1225 3expd 1226 exp5o 1228 syl3an2 1283 syl3an3 1284 syl2an23an 1311 3impexpbicomi 1458 rexlimdv3a 2624 rabssdv 3272 reupick2 3458 ssorduni 4534 tfisi 4634 fvssunirng 5590 f1oiso2 5895 poxp 6317 tfrlem5 6399 nndi 6571 nnmass 6572 findcard 6984 ac6sfi 6994 mulcanpig 7447 divgt0 8944 divge0 8945 uzind 9483 uzind2 9484 facavg 10889 prodfap0 11827 prodfrecap 11828 fprodabs 11898 dvdsmodexp 12077 dvdsaddre2b 12123 dvdsnprmd 12418 prmndvdsfaclt 12449 fermltl 12527 pceu 12589 mulgass2 13791 islss4 14115 rnglidlmcl 14213 fiinopn 14447 neipsm 14597 tpnei 14603 opnneiid 14607 neibl 14934 tgqioo 14998 gausslemma2dlem1a 15506 |
| Copyright terms: Public domain | W3C validator |