| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3exp | GIF version | ||
| Description: Exportation inference. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3exp | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2an3 1178 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl8 71 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3expa 1205 3expb 1206 3expia 1207 3expib 1208 3com23 1211 3an1rs 1221 3exp1 1225 3expd 1226 exp5o 1228 syl3an2 1283 syl3an3 1284 syl2an23an 1310 3impexpbicomi 1450 rexlimdv3a 2616 rabssdv 3263 reupick2 3449 ssorduni 4523 tfisi 4623 fvssunirng 5573 f1oiso2 5874 poxp 6290 tfrlem5 6372 nndi 6544 nnmass 6545 findcard 6949 ac6sfi 6959 mulcanpig 7402 divgt0 8899 divge0 8900 uzind 9437 uzind2 9438 facavg 10838 prodfap0 11710 prodfrecap 11711 fprodabs 11781 dvdsmodexp 11960 dvdsaddre2b 12006 dvdsnprmd 12293 prmndvdsfaclt 12324 fermltl 12402 pceu 12464 mulgass2 13614 islss4 13938 rnglidlmcl 14036 fiinopn 14240 neipsm 14390 tpnei 14396 opnneiid 14400 neibl 14727 tgqioo 14791 gausslemma2dlem1a 15299 |
| Copyright terms: Public domain | W3C validator |