| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3exp | GIF version | ||
| Description: Exportation inference. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3exp | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2an3 1179 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl8 71 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: 3expa 1206 3expb 1207 3expia 1208 3expib 1209 3com23 1212 3an1rs 1222 3exp1 1226 3expd 1227 exp5o 1229 syl3an2 1284 syl3an3 1285 syl2an23an 1312 3impexpbicomi 1460 rexlimdv3a 2626 rabssdv 3277 reupick2 3463 ssorduni 4543 tfisi 4643 fvssunirng 5604 f1oiso2 5909 poxp 6331 tfrlem5 6413 nndi 6585 nnmass 6586 findcard 7000 ac6sfi 7010 mulcanpig 7468 divgt0 8965 divge0 8966 uzind 9504 uzind2 9505 facavg 10913 prodfap0 11931 prodfrecap 11932 fprodabs 12002 dvdsmodexp 12181 dvdsaddre2b 12227 dvdsnprmd 12522 prmndvdsfaclt 12553 fermltl 12631 pceu 12693 mulgass2 13895 islss4 14219 rnglidlmcl 14317 fiinopn 14551 neipsm 14701 tpnei 14707 opnneiid 14711 neibl 15038 tgqioo 15102 gausslemma2dlem1a 15610 |
| Copyright terms: Public domain | W3C validator |