| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3exp | GIF version | ||
| Description: Exportation inference. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3exp | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2an3 1178 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl8 71 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3expa 1205 3expb 1206 3expia 1207 3expib 1208 3com23 1211 3an1rs 1221 3exp1 1225 3expd 1226 exp5o 1228 syl3an2 1283 syl3an3 1284 syl2an23an 1310 3impexpbicomi 1450 rexlimdv3a 2616 rabssdv 3264 reupick2 3450 ssorduni 4524 tfisi 4624 fvssunirng 5576 f1oiso2 5877 poxp 6299 tfrlem5 6381 nndi 6553 nnmass 6554 findcard 6958 ac6sfi 6968 mulcanpig 7419 divgt0 8916 divge0 8917 uzind 9454 uzind2 9455 facavg 10855 prodfap0 11727 prodfrecap 11728 fprodabs 11798 dvdsmodexp 11977 dvdsaddre2b 12023 dvdsnprmd 12318 prmndvdsfaclt 12349 fermltl 12427 pceu 12489 mulgass2 13690 islss4 14014 rnglidlmcl 14112 fiinopn 14324 neipsm 14474 tpnei 14480 opnneiid 14484 neibl 14811 tgqioo 14875 gausslemma2dlem1a 15383 |
| Copyright terms: Public domain | W3C validator |