| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3exp | GIF version | ||
| Description: Exportation inference. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3exp | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2an3 1178 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl8 71 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3expa 1205 3expb 1206 3expia 1207 3expib 1208 3com23 1211 3an1rs 1221 3exp1 1225 3expd 1226 exp5o 1228 syl3an2 1283 syl3an3 1284 syl2an23an 1310 3impexpbicomi 1450 rexlimdv3a 2616 rabssdv 3264 reupick2 3450 ssorduni 4524 tfisi 4624 fvssunirng 5576 f1oiso2 5877 poxp 6299 tfrlem5 6381 nndi 6553 nnmass 6554 findcard 6958 ac6sfi 6968 mulcanpig 7421 divgt0 8918 divge0 8919 uzind 9456 uzind2 9457 facavg 10857 prodfap0 11729 prodfrecap 11730 fprodabs 11800 dvdsmodexp 11979 dvdsaddre2b 12025 dvdsnprmd 12320 prmndvdsfaclt 12351 fermltl 12429 pceu 12491 mulgass2 13692 islss4 14016 rnglidlmcl 14114 fiinopn 14348 neipsm 14498 tpnei 14504 opnneiid 14508 neibl 14835 tgqioo 14899 gausslemma2dlem1a 15407 |
| Copyright terms: Public domain | W3C validator |