| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3exp | GIF version | ||
| Description: Exportation inference. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3exp | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2an3 1178 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl8 71 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3expa 1205 3expb 1206 3expia 1207 3expib 1208 3com23 1211 3an1rs 1221 3exp1 1225 3expd 1226 exp5o 1228 syl3an2 1283 syl3an3 1284 syl2an23an 1311 3impexpbicomi 1458 rexlimdv3a 2624 rabssdv 3272 reupick2 3458 ssorduni 4534 tfisi 4634 fvssunirng 5590 f1oiso2 5895 poxp 6317 tfrlem5 6399 nndi 6571 nnmass 6572 findcard 6984 ac6sfi 6994 mulcanpig 7447 divgt0 8944 divge0 8945 uzind 9483 uzind2 9484 facavg 10889 prodfap0 11798 prodfrecap 11799 fprodabs 11869 dvdsmodexp 12048 dvdsaddre2b 12094 dvdsnprmd 12389 prmndvdsfaclt 12420 fermltl 12498 pceu 12560 mulgass2 13762 islss4 14086 rnglidlmcl 14184 fiinopn 14418 neipsm 14568 tpnei 14574 opnneiid 14578 neibl 14905 tgqioo 14969 gausslemma2dlem1a 15477 |
| Copyright terms: Public domain | W3C validator |