| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3exp | GIF version | ||
| Description: Exportation inference. (Contributed by NM, 30-May-1994.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3exp | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2an3 1200 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) | |
| 2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 1, 2 | syl8 71 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3expa 1227 3expb 1228 3expia 1229 3expib 1230 3com23 1233 3an1rs 1243 3exp1 1247 3expd 1248 exp5o 1250 syl3an2 1305 syl3an3 1306 syl2an23an 1333 3impexpbicomi 1482 rexlimdv3a 2650 rabssdv 3304 reupick2 3490 ssorduni 4578 tfisi 4678 fvssunirng 5641 f1oiso2 5950 poxp 6376 tfrlem5 6458 nndi 6630 nnmass 6631 findcard 7046 ac6sfi 7056 mulcanpig 7518 divgt0 9015 divge0 9016 uzind 9554 uzind2 9555 facavg 10963 prodfap0 12051 prodfrecap 12052 fprodabs 12122 dvdsmodexp 12301 dvdsaddre2b 12347 dvdsnprmd 12642 prmndvdsfaclt 12673 fermltl 12751 pceu 12813 mulgass2 14016 islss4 14340 rnglidlmcl 14438 fiinopn 14672 neipsm 14822 tpnei 14828 opnneiid 14832 neibl 15159 tgqioo 15223 gausslemma2dlem1a 15731 ausgrumgrien 15962 ausgrusgrien 15963 usgrausgrben 15964 ushgredgedg 16018 ushgredgedgloop 16020 |
| Copyright terms: Public domain | W3C validator |