ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exp GIF version

Theorem 3exp 1204
Description: Exportation inference. (Contributed by NM, 30-May-1994.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3exp (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem 3exp
StepHypRef Expression
1 pm3.2an3 1178 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜑𝜓𝜒))))
2 3exp.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl8 71 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3expa  1205  3expb  1206  3expia  1207  3expib  1208  3com23  1211  3an1rs  1221  3exp1  1225  3expd  1226  exp5o  1228  syl3an2  1283  syl3an3  1284  syl2an23an  1311  3impexpbicomi  1458  rexlimdv3a  2624  rabssdv  3272  reupick2  3458  ssorduni  4534  tfisi  4634  fvssunirng  5590  f1oiso2  5895  poxp  6317  tfrlem5  6399  nndi  6571  nnmass  6572  findcard  6984  ac6sfi  6994  mulcanpig  7447  divgt0  8944  divge0  8945  uzind  9483  uzind2  9484  facavg  10889  prodfap0  11827  prodfrecap  11828  fprodabs  11898  dvdsmodexp  12077  dvdsaddre2b  12123  dvdsnprmd  12418  prmndvdsfaclt  12449  fermltl  12527  pceu  12589  mulgass2  13791  islss4  14115  rnglidlmcl  14213  fiinopn  14447  neipsm  14597  tpnei  14603  opnneiid  14607  neibl  14934  tgqioo  14998  gausslemma2dlem1a  15506
  Copyright terms: Public domain W3C validator