![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3exp | GIF version |
Description: Exportation inference. (Contributed by NM, 30-May-1994.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3exp | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2an3 1177 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 ∧ 𝜓 ∧ 𝜒)))) | |
2 | 3exp.1 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 1, 2 | syl8 71 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 981 |
This theorem is referenced by: 3expa 1204 3expb 1205 3expia 1206 3expib 1207 3com23 1210 3an1rs 1220 3exp1 1224 3expd 1225 exp5o 1227 syl3an2 1282 syl3an3 1283 syl2an23an 1309 3impexpbicomi 1449 rexlimdv3a 2606 rabssdv 3247 reupick2 3433 ssorduni 4498 tfisi 4598 fvssunirng 5542 f1oiso2 5841 poxp 6247 tfrlem5 6329 nndi 6501 nnmass 6502 findcard 6902 ac6sfi 6912 mulcanpig 7348 divgt0 8843 divge0 8844 uzind 9378 uzind2 9379 facavg 10740 prodfap0 11567 prodfrecap 11568 fprodabs 11638 dvdsmodexp 11816 dvdsaddre2b 11862 dvdsnprmd 12139 prmndvdsfaclt 12170 fermltl 12248 pceu 12309 mulgass2 13365 islss4 13628 rnglidlmcl 13726 fiinopn 13857 neipsm 14007 tpnei 14013 opnneiid 14017 neibl 14344 tgqioo 14400 |
Copyright terms: Public domain | W3C validator |