ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3exp GIF version

Theorem 3exp 1204
Description: Exportation inference. (Contributed by NM, 30-May-1994.)
Hypothesis
Ref Expression
3exp.1 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
3exp (𝜑 → (𝜓 → (𝜒𝜃)))

Proof of Theorem 3exp
StepHypRef Expression
1 pm3.2an3 1178 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜑𝜓𝜒))))
2 3exp.1 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2syl8 71 1 (𝜑 → (𝜓 → (𝜒𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  3expa  1205  3expb  1206  3expia  1207  3expib  1208  3com23  1211  3an1rs  1221  3exp1  1225  3expd  1226  exp5o  1228  syl3an2  1283  syl3an3  1284  syl2an23an  1311  3impexpbicomi  1458  rexlimdv3a  2624  rabssdv  3272  reupick2  3458  ssorduni  4533  tfisi  4633  fvssunirng  5585  f1oiso2  5886  poxp  6308  tfrlem5  6390  nndi  6562  nnmass  6563  findcard  6967  ac6sfi  6977  mulcanpig  7430  divgt0  8927  divge0  8928  uzind  9466  uzind2  9467  facavg  10872  prodfap0  11775  prodfrecap  11776  fprodabs  11846  dvdsmodexp  12025  dvdsaddre2b  12071  dvdsnprmd  12366  prmndvdsfaclt  12397  fermltl  12475  pceu  12537  mulgass2  13738  islss4  14062  rnglidlmcl  14160  fiinopn  14394  neipsm  14544  tpnei  14550  opnneiid  14554  neibl  14881  tgqioo  14945  gausslemma2dlem1a  15453
  Copyright terms: Public domain W3C validator