| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3pm3.2i | GIF version | ||
| Description: Infer conjunction of premises. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| 3pm3.2i.1 | ⊢ 𝜑 |
| 3pm3.2i.2 | ⊢ 𝜓 |
| 3pm3.2i.3 | ⊢ 𝜒 |
| Ref | Expression |
|---|---|
| 3pm3.2i | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3pm3.2i.1 | . . 3 ⊢ 𝜑 | |
| 2 | 3pm3.2i.2 | . . 3 ⊢ 𝜓 | |
| 3 | 1, 2 | pm3.2i 272 | . 2 ⊢ (𝜑 ∧ 𝜓) |
| 4 | 3pm3.2i.3 | . 2 ⊢ 𝜒 | |
| 5 | df-3an 982 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 6 | 3, 4, 5 | mpbir2an 944 | 1 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: mpbir3an 1181 3jaoi 1314 ftp 5750 4bc2eq6 10883 halfleoddlt 12076 strleun 12807 strle1g 12809 slotstnscsi 12897 slotsdnscsi 12925 slotsdifunifndx 12934 2irrexpqap 15298 lgslem2 15326 lgsdir2lem2 15354 lgsdir2lem3 15355 ex-dvds 15460 nconstwlpolem0 15794 |
| Copyright terms: Public domain | W3C validator |