| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm3.37 | GIF version | ||
| Description: Theorem *3.37 (Transp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| pm3.37 | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.3 261 | . . 3 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | con3 643 | . . 3 ⊢ ((𝜓 → 𝜒) → (¬ 𝜒 → ¬ 𝜓)) | |
| 3 | 1, 2 | syl6 33 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (¬ 𝜒 → ¬ 𝜓))) | 
| 4 | 3 | impd 254 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem is referenced by: ndvdssub 12095 | 
| Copyright terms: Public domain | W3C validator |