Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm3.37 | GIF version |
Description: Theorem *3.37 (Transp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm3.37 | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 259 | . . 3 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | con3 632 | . . 3 ⊢ ((𝜓 → 𝜒) → (¬ 𝜒 → ¬ 𝜓)) | |
3 | 1, 2 | syl6 33 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (¬ 𝜒 → ¬ 𝜓))) |
4 | 3 | impd 252 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem is referenced by: ndvdssub 11867 |
Copyright terms: Public domain | W3C validator |