ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndvdssub GIF version

Theorem ndvdssub 11023
Description: Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 − 1, 𝑁 − 2... 𝑁 − (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdssub ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))

Proof of Theorem ndvdssub
Dummy variables 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 8650 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ∈ ℕ0)
2 nnne0 8422 . . . . . . . 8 (𝐾 ∈ ℕ → 𝐾 ≠ 0)
31, 2jca 300 . . . . . . 7 (𝐾 ∈ ℕ → (𝐾 ∈ ℕ0𝐾 ≠ 0))
4 df-ne 2256 . . . . . . . . . . . 12 (𝐾 ≠ 0 ↔ ¬ 𝐾 = 0)
54anbi2i 445 . . . . . . . . . . 11 ((𝐾 < 𝐷𝐾 ≠ 0) ↔ (𝐾 < 𝐷 ∧ ¬ 𝐾 = 0))
6 divalg2 11019 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)))
7 breq1 3840 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑥 → (𝑟 < 𝐷𝑥 < 𝐷))
8 oveq2 5642 . . . . . . . . . . . . . . . . . . . . . 22 (𝑟 = 𝑥 → (𝑁𝑟) = (𝑁𝑥))
98breq2d 3849 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 = 𝑥 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝑥)))
107, 9anbi12d 457 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑥 → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))))
1110reu4 2807 . . . . . . . . . . . . . . . . . . 19 (∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (∃𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥)))
126, 11sylib 120 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (∃𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥)))
13 nngt0 8419 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐷 ∈ ℕ → 0 < 𝐷)
14133ad2ant2 965 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → 0 < 𝐷)
15 zcn 8725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
1615subid1d 7761 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℤ → (𝑁 − 0) = 𝑁)
1716breq2d 3849 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℤ → (𝐷 ∥ (𝑁 − 0) ↔ 𝐷𝑁))
1817biimpar 291 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℤ ∧ 𝐷𝑁) → 𝐷 ∥ (𝑁 − 0))
19183adant2 962 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → 𝐷 ∥ (𝑁 − 0))
2014, 19jca 300 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (0 < 𝐷𝐷 ∥ (𝑁 − 0)))
21203expa 1143 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → (0 < 𝐷𝐷 ∥ (𝑁 − 0)))
2221anim2i 334 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁)) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
2322ancoms 264 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) ∧ (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟))) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
24 0nn0 8658 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℕ0
25 breq1 3840 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 0 → (𝑥 < 𝐷 ↔ 0 < 𝐷))
26 oveq2 5642 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = 0 → (𝑁𝑥) = (𝑁 − 0))
2726breq2d 3849 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = 0 → (𝐷 ∥ (𝑁𝑥) ↔ 𝐷 ∥ (𝑁 − 0)))
2825, 27anbi12d 457 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → ((𝑥 < 𝐷𝐷 ∥ (𝑁𝑥)) ↔ (0 < 𝐷𝐷 ∥ (𝑁 − 0))))
2928anbi2d 452 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) ↔ ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0)))))
30 eqeq2 2097 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (𝑟 = 𝑥𝑟 = 0))
3129, 30imbi12d 232 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → ((((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) ↔ (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0)))
3231rspcv 2718 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ ℕ0 → (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0)))
3324, 32ax-mp 7 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (0 < 𝐷𝐷 ∥ (𝑁 − 0))) → 𝑟 = 0))
3423, 33syl5 32 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → ((((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) ∧ (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟))) → 𝑟 = 0))
3534expd 254 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3635ralimi 2438 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ ℕ0𝑥 ∈ ℕ0 (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ∧ (𝑥 < 𝐷𝐷 ∥ (𝑁𝑥))) → 𝑟 = 𝑥) → ∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3712, 36simpl2im 378 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
38 r19.21v 2450 . . . . . . . . . . . . . . . . 17 (∀𝑟 ∈ ℕ0 (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)) ↔ (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
3937, 38sylib 120 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
4039expd 254 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0))))
4140pm2.43i 48 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0)))
42413impia 1140 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → ∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0))
43 breq1 3840 . . . . . . . . . . . . . . . 16 (𝑟 = 𝐾 → (𝑟 < 𝐷𝐾 < 𝐷))
44 oveq2 5642 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝐾 → (𝑁𝑟) = (𝑁𝐾))
4544breq2d 3849 . . . . . . . . . . . . . . . 16 (𝑟 = 𝐾 → (𝐷 ∥ (𝑁𝑟) ↔ 𝐷 ∥ (𝑁𝐾)))
4643, 45anbi12d 457 . . . . . . . . . . . . . . 15 (𝑟 = 𝐾 → ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) ↔ (𝐾 < 𝐷𝐷 ∥ (𝑁𝐾))))
47 eqeq1 2094 . . . . . . . . . . . . . . 15 (𝑟 = 𝐾 → (𝑟 = 0 ↔ 𝐾 = 0))
4846, 47imbi12d 232 . . . . . . . . . . . . . 14 (𝑟 = 𝐾 → (((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0) ↔ ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
4948rspcv 2718 . . . . . . . . . . . . 13 (𝐾 ∈ ℕ0 → (∀𝑟 ∈ ℕ0 ((𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)) → 𝑟 = 0) → ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
5042, 49syl5com 29 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0)))
51 pm3.37 826 . . . . . . . . . . . 12 (((𝐾 < 𝐷𝐷 ∥ (𝑁𝐾)) → 𝐾 = 0) → ((𝐾 < 𝐷 ∧ ¬ 𝐾 = 0) → ¬ 𝐷 ∥ (𝑁𝐾)))
5250, 51syl6 33 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷 ∧ ¬ 𝐾 = 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
535, 52syl7bi 163 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → ((𝐾 < 𝐷𝐾 ≠ 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
5453exp4a 358 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ0 → (𝐾 < 𝐷 → (𝐾 ≠ 0 → ¬ 𝐷 ∥ (𝑁𝐾)))))
5554com23 77 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → (𝐾 ∈ ℕ0 → (𝐾 ≠ 0 → ¬ 𝐷 ∥ (𝑁𝐾)))))
5655imp4a 341 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → ((𝐾 ∈ ℕ0𝐾 ≠ 0) → ¬ 𝐷 ∥ (𝑁𝐾))))
573, 56syl7 68 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 < 𝐷 → (𝐾 ∈ ℕ → ¬ 𝐷 ∥ (𝑁𝐾))))
5857com23 77 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → (𝐾 ∈ ℕ → (𝐾 < 𝐷 → ¬ 𝐷 ∥ (𝑁𝐾))))
5958impd 251 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐷𝑁) → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → ¬ 𝐷 ∥ (𝑁𝐾)))
60593expia 1145 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝐷𝑁 → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → ¬ 𝐷 ∥ (𝑁𝐾))))
6160com23 77 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ((𝐾 ∈ ℕ ∧ 𝐾 < 𝐷) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾))))
62613impia 1140 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  w3a 924   = wceq 1289  wcel 1438  wne 2255  wral 2359  wrex 2360  ∃!wreu 2361   class class class wbr 3837  (class class class)co 5634  0cc0 7329   < clt 7501  cmin 7632  cn 8394  0cn0 8643  cz 8720  cdvds 10889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fl 9642  df-mod 9695  df-iseq 9818  df-seq3 9819  df-exp 9920  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397  df-dvds 10890
This theorem is referenced by:  ndvdsadd  11024
  Copyright terms: Public domain W3C validator