ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con3 GIF version

Theorem con3 631
Description: Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Feb-2013.)
Assertion
Ref Expression
con3 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem con3
StepHypRef Expression
1 id 19 . 2 ((𝜑𝜓) → (𝜑𝜓))
21con3d 620 1 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 603  ax-in2 604
This theorem is referenced by:  mtt  674  annimim  675  pm3.37  678  const  837  con34bdc  856  hbnt  1631  ralf0  3466  ltleletr  7858  ltnsym  7862  bj-nnsn  13004  bj-nnclavius  13009
  Copyright terms: Public domain W3C validator