ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con3 GIF version

Theorem con3 637
Description: Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Feb-2013.)
Assertion
Ref Expression
con3 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))

Proof of Theorem con3
StepHypRef Expression
1 id 19 . 2 ((𝜑𝜓) → (𝜑𝜓))
21con3d 626 1 ((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 609  ax-in2 610
This theorem is referenced by:  mtt  680  annimim  681  pm3.37  684  con34bdc  866  hbnt  1646  ralf0  3518  ltleletr  8001  ltnsym  8005  bj-nnsn  13768  bj-nnclavius  13772  bj-con1st  13786
  Copyright terms: Public domain W3C validator