ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.15 GIF version

Theorem pm4.15 684
Description: Theorem *4.15 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)
Assertion
Ref Expression
pm4.15 (((𝜑𝜓) → ¬ 𝜒) ↔ ((𝜓𝜒) → ¬ 𝜑))

Proof of Theorem pm4.15
StepHypRef Expression
1 con2b 659 . 2 (((𝜓𝜒) → ¬ 𝜑) ↔ (𝜑 → ¬ (𝜓𝜒)))
2 nan 682 . 2 ((𝜑 → ¬ (𝜓𝜒)) ↔ ((𝜑𝜓) → ¬ 𝜒))
31, 2bitr2i 184 1 (((𝜑𝜓) → ¬ 𝜒) ↔ ((𝜓𝜒) → ¬ 𝜑))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator