![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2i.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr2i | ⊢ (𝜒 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2i.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 1, 2 | bitri 184 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3 | bicomi 132 | 1 ⊢ (𝜒 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 692 pm4.15 694 3or6 1323 sbal1yz 2001 2exsb 2009 moanim 2100 2eu4 2119 cvjust 2172 abbi 2291 sbc8g 2972 ss2rab 3233 unass 3294 unss 3311 undi 3385 difindiss 3391 notm0 3445 disj 3473 unopab 4084 eqvinop 4245 pwexb 4476 dmun 4836 reldm0 4847 dmres 4930 imadmrn 4982 ssrnres 5073 dmsnm 5096 coundi 5132 coundir 5133 cnvpom 5173 xpcom 5177 fun11 5285 fununi 5286 funcnvuni 5287 isarep1 5304 fsn 5690 fconstfvm 5736 eufnfv 5749 acexmidlem2 5874 eloprabga 5964 funoprabg 5976 ralrnmpo 5991 rexrnmpo 5992 oprabrexex2 6133 dfer2 6538 euen1b 6805 xpsnen 6823 rexuz3 11001 imasaddfnlemg 12740 subsubrg2 13372 tgval2 13590 ssntr 13661 metrest 14045 sinhalfpilem 14251 |
Copyright terms: Public domain | W3C validator |