![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2i.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr2i | ⊢ (𝜒 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2i.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 1, 2 | bitri 184 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3 | bicomi 132 | 1 ⊢ (𝜒 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 693 pm4.15 695 3or6 1334 sbal1yz 2017 2exsb 2025 moanim 2116 2eu4 2135 cvjust 2188 abbi 2307 sbc8g 2994 ss2rab 3256 unass 3317 unss 3334 undi 3408 difindiss 3414 notm0 3468 disj 3496 unopab 4109 eqvinop 4273 pwexb 4506 dmun 4870 reldm0 4881 dmres 4964 imadmrn 5016 ssrnres 5109 dmsnm 5132 coundi 5168 coundir 5169 cnvpom 5209 xpcom 5213 fun11 5322 fununi 5323 funcnvuni 5324 isarep1 5341 fsn 5731 fconstfvm 5777 eufnfv 5790 acexmidlem2 5916 eloprabga 6006 funoprabg 6018 ralrnmpo 6034 rexrnmpo 6035 oprabrexex2 6184 dfer2 6590 euen1b 6859 xpsnen 6877 rexuz3 11137 imasaddfnlemg 12900 subsubrng2 13714 subsubrg2 13745 tgval2 14230 ssntr 14301 metrest 14685 plyun0 14915 sinhalfpilem 14967 2lgslem4 15260 |
Copyright terms: Public domain | W3C validator |