![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2i.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr2i | ⊢ (𝜒 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2i.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 1, 2 | bitri 184 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3 | bicomi 132 | 1 ⊢ (𝜒 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 693 pm4.15 695 3or6 1334 sbal1yz 2017 2exsb 2025 moanim 2116 2eu4 2135 cvjust 2188 abbi 2307 sbc8g 2993 ss2rab 3255 unass 3316 unss 3333 undi 3407 difindiss 3413 notm0 3467 disj 3495 unopab 4108 eqvinop 4272 pwexb 4505 dmun 4869 reldm0 4880 dmres 4963 imadmrn 5015 ssrnres 5108 dmsnm 5131 coundi 5167 coundir 5168 cnvpom 5208 xpcom 5212 fun11 5321 fununi 5322 funcnvuni 5323 isarep1 5340 fsn 5730 fconstfvm 5776 eufnfv 5789 acexmidlem2 5915 eloprabga 6005 funoprabg 6017 ralrnmpo 6033 rexrnmpo 6034 oprabrexex2 6182 dfer2 6588 euen1b 6857 xpsnen 6875 rexuz3 11134 imasaddfnlemg 12897 subsubrng2 13711 subsubrg2 13742 tgval2 14219 ssntr 14290 metrest 14674 plyun0 14882 sinhalfpilem 14926 |
Copyright terms: Public domain | W3C validator |