![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bitr2i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2i.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr2i | ⊢ (𝜒 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2i.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 1, 2 | bitri 183 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3 | bicomi 131 | 1 ⊢ (𝜒 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrri 206 3bitr2ri 208 3bitr4ri 212 nan 662 pm4.15 828 3or6 1260 sbal1yz 1926 2exsb 1934 moanim 2023 2eu4 2042 cvjust 2084 abbi 2202 sbc8g 2848 ss2rab 3098 unass 3158 unss 3175 undi 3248 difindiss 3254 notm0 3307 disj 3335 unopab 3923 eqvinop 4079 pwexb 4309 dmun 4656 reldm0 4667 dmres 4747 imadmrn 4797 ssrnres 4886 dmsnm 4909 coundi 4945 coundir 4946 cnvpom 4986 xpcom 4990 fun11 5094 fununi 5095 funcnvuni 5096 isarep1 5113 fsn 5483 fconstfvm 5529 eufnfv 5539 acexmidlem2 5663 eloprabga 5749 funoprabg 5758 ralrnmpt2 5773 rexrnmpt2 5774 oprabrexex2 5915 dfer2 6307 euen1b 6574 xpsnen 6591 rexuz3 10484 tgval2 11812 ssntr 11883 |
Copyright terms: Public domain | W3C validator |