| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2i | GIF version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr2i.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| bitr2i | ⊢ (𝜒 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr2i.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 1, 2 | bitri 184 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3 | bicomi 132 | 1 ⊢ (𝜒 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 696 pm4.15 699 3or6 1357 sbal1yz 2052 2exsb 2060 moanim 2152 2eu4 2171 cvjust 2224 abbi 2343 sbc8g 3036 ss2rab 3300 unass 3361 unss 3378 undi 3452 difindiss 3458 notm0 3512 disj 3540 unopab 4163 eqvinop 4329 pwexb 4565 dmun 4930 reldm0 4941 dmres 5026 imadmrn 5078 ssrnres 5171 dmsnm 5194 coundi 5230 coundir 5231 cnvpom 5271 xpcom 5275 fun11 5388 fununi 5389 funcnvuni 5390 isarep1 5407 fsn 5809 fconstfvm 5861 eufnfv 5874 acexmidlem2 6004 eloprabga 6097 funoprabg 6109 ralrnmpo 6125 rexrnmpo 6126 oprabrexex2 6281 dfer2 6689 euen1b 6963 xpsnen 6988 rexuz3 11509 imasaddfnlemg 13355 subsubrng2 14187 subsubrg2 14218 tgval2 14733 ssntr 14804 metrest 15188 plyun0 15418 sinhalfpilem 15473 2lgslem4 15790 wlkeq 16075 |
| Copyright terms: Public domain | W3C validator |