| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2i | GIF version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr2i.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| bitr2i | ⊢ (𝜒 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr2i.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 1, 2 | bitri 184 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3 | bicomi 132 | 1 ⊢ (𝜒 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 696 pm4.15 698 3or6 1338 sbal1yz 2032 2exsb 2040 moanim 2132 2eu4 2151 cvjust 2204 abbi 2323 sbc8g 3016 ss2rab 3280 unass 3341 unss 3358 undi 3432 difindiss 3438 notm0 3492 disj 3520 unopab 4142 eqvinop 4308 pwexb 4542 dmun 4907 reldm0 4918 dmres 5002 imadmrn 5054 ssrnres 5147 dmsnm 5170 coundi 5206 coundir 5207 cnvpom 5247 xpcom 5251 fun11 5364 fununi 5365 funcnvuni 5366 isarep1 5383 fsn 5780 fconstfvm 5830 eufnfv 5843 acexmidlem2 5971 eloprabga 6062 funoprabg 6074 ralrnmpo 6090 rexrnmpo 6091 oprabrexex2 6245 dfer2 6651 euen1b 6925 xpsnen 6948 rexuz3 11467 imasaddfnlemg 13313 subsubrng2 14144 subsubrg2 14175 tgval2 14690 ssntr 14761 metrest 15145 plyun0 15375 sinhalfpilem 15430 2lgslem4 15747 |
| Copyright terms: Public domain | W3C validator |