Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr2i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2i.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr2i | ⊢ (𝜒 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2i.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 1, 2 | bitri 184 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3 | bicomi 132 | 1 ⊢ (𝜒 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 692 pm4.15 694 3or6 1323 sbal1yz 1999 2exsb 2007 moanim 2098 2eu4 2117 cvjust 2170 abbi 2289 sbc8g 2968 ss2rab 3229 unass 3290 unss 3307 undi 3381 difindiss 3387 notm0 3441 disj 3469 unopab 4077 eqvinop 4237 pwexb 4468 dmun 4827 reldm0 4838 dmres 4921 imadmrn 4973 ssrnres 5063 dmsnm 5086 coundi 5122 coundir 5123 cnvpom 5163 xpcom 5167 fun11 5275 fununi 5276 funcnvuni 5277 isarep1 5294 fsn 5680 fconstfvm 5726 eufnfv 5738 acexmidlem2 5862 eloprabga 5952 funoprabg 5964 ralrnmpo 5979 rexrnmpo 5980 oprabrexex2 6121 dfer2 6526 euen1b 6793 xpsnen 6811 rexuz3 10965 tgval2 13120 ssntr 13191 metrest 13575 sinhalfpilem 13781 |
Copyright terms: Public domain | W3C validator |