| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitr2i | GIF version | ||
| Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| bitr2i.2 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| bitr2i | ⊢ (𝜒 ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bitr2i.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
| 3 | 1, 2 | bitri 184 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 3 | bicomi 132 | 1 ⊢ (𝜒 ↔ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3bitrri 207 3bitr2ri 209 3bitr4ri 213 nan 694 pm4.15 696 3or6 1336 sbal1yz 2030 2exsb 2038 moanim 2129 2eu4 2148 cvjust 2201 abbi 2320 sbc8g 3007 ss2rab 3270 unass 3331 unss 3348 undi 3422 difindiss 3428 notm0 3482 disj 3510 unopab 4127 eqvinop 4291 pwexb 4525 dmun 4890 reldm0 4901 dmres 4985 imadmrn 5037 ssrnres 5130 dmsnm 5153 coundi 5189 coundir 5190 cnvpom 5230 xpcom 5234 fun11 5346 fununi 5347 funcnvuni 5348 isarep1 5365 fsn 5759 fconstfvm 5809 eufnfv 5822 acexmidlem2 5948 eloprabga 6039 funoprabg 6051 ralrnmpo 6067 rexrnmpo 6068 oprabrexex2 6222 dfer2 6628 euen1b 6902 xpsnen 6923 rexuz3 11345 imasaddfnlemg 13190 subsubrng2 14021 subsubrg2 14052 tgval2 14567 ssntr 14638 metrest 15022 plyun0 15252 sinhalfpilem 15307 2lgslem4 15624 |
| Copyright terms: Public domain | W3C validator |