Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bitr2i | GIF version |
Description: An inference from transitive law for logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bitr2i.1 | ⊢ (𝜑 ↔ 𝜓) |
bitr2i.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
bitr2i | ⊢ (𝜒 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | bitr2i.2 | . . 3 ⊢ (𝜓 ↔ 𝜒) | |
3 | 1, 2 | bitri 183 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 3 | bicomi 131 | 1 ⊢ (𝜒 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3bitrri 206 3bitr2ri 208 3bitr4ri 212 nan 682 pm4.15 684 3or6 1313 sbal1yz 1989 2exsb 1997 moanim 2088 2eu4 2107 cvjust 2160 abbi 2280 sbc8g 2958 ss2rab 3218 unass 3279 unss 3296 undi 3370 difindiss 3376 notm0 3429 disj 3457 unopab 4061 eqvinop 4221 pwexb 4452 dmun 4811 reldm0 4822 dmres 4905 imadmrn 4956 ssrnres 5046 dmsnm 5069 coundi 5105 coundir 5106 cnvpom 5146 xpcom 5150 fun11 5255 fununi 5256 funcnvuni 5257 isarep1 5274 fsn 5657 fconstfvm 5703 eufnfv 5715 acexmidlem2 5839 eloprabga 5929 funoprabg 5941 ralrnmpo 5956 rexrnmpo 5957 oprabrexex2 6098 dfer2 6502 euen1b 6769 xpsnen 6787 rexuz3 10932 tgval2 12691 ssntr 12762 metrest 13146 sinhalfpilem 13352 |
Copyright terms: Public domain | W3C validator |