ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.63dc GIF version

Theorem pm4.63dc 876
Description: Theorem *4.63 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 1-May-2018.)
Assertion
Ref Expression
pm4.63dc (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 → ¬ 𝜓) ↔ (𝜑𝜓))))

Proof of Theorem pm4.63dc
StepHypRef Expression
1 dfandc 874 . . . 4 (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))))
21imp 123 . . 3 ((DECID 𝜑DECID 𝜓) → ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)))
32bicomd 140 . 2 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑 → ¬ 𝜓) ↔ (𝜑𝜓)))
43ex 114 1 (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑 → ¬ 𝜓) ↔ (𝜑𝜓))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by:  pm4.67dc  877
  Copyright terms: Public domain W3C validator