![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bicomd | GIF version |
Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bicomd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bicomd | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bicom 140 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: impbid2 143 imbitrrid 156 ibir 177 bitr2d 189 bitr3d 190 bitr4d 191 bitr2id 193 bitr2di 197 pm5.5 242 anabs5 573 con2bidc 876 con1biidc 878 con2biidc 880 pm4.63dc 887 pm4.64dc 901 pm5.55dc 914 baibr 921 baibd 924 rbaibd 925 pm5.75 964 ninba 974 xor3dc 1398 3impexpbicomi 1450 cbvexv1 1763 cbvexh 1766 sbequ12r 1783 sbco 1984 sbcomxyyz 1988 sbal1yz 2017 cbvab 2317 nnedc 2369 necon3bbid 2404 necon2abiidc 2428 necon2bbiidc 2429 sbralie 2744 gencbvex 2807 gencbval 2809 sbhypf 2810 clel3g 2895 reu8 2957 sbceq2a 2997 sbcco2 3009 sbcsng 3678 ssdifsn 3747 opabid 4287 soeq2 4348 tfisi 4620 posng 4732 xpiindim 4800 fvopab6 5655 fconstfvm 5777 cbvfo 5829 cbvexfo 5830 f1eqcocnv 5835 isoid 5854 isoini 5862 resoprab2 6016 dfoprab3 6246 cnvoprab 6289 nnacan 6567 nnmcan 6574 isotilem 7067 eqinfti 7081 inflbti 7085 infglbti 7086 djuf1olem 7114 dfmpq2 7417 axsuploc 8094 div4p1lem1div2 9239 ztri3or 9363 nn0ind-raph 9437 zindd 9438 qreccl 9710 elpq 9717 iooshf 10021 fzofzim 10258 elfzomelpfzo 10301 zmodid2 10426 q2submod 10459 modfzo0difsn 10469 frec2uzltd 10477 frec2uzled 10503 prhash2ex 10883 iserex 11485 prodrbdc 11720 reef11 11845 absdvdsb 11955 dvdsabsb 11956 modmulconst 11969 dvdsadd 11982 dvdsabseq 11992 odd2np1 12017 mod2eq0even 12022 oddnn02np1 12024 oddge22np1 12025 evennn02n 12026 evennn2n 12027 zeo5 12032 gcdass 12155 lcmdvds 12220 lcmass 12226 divgcdcoprm0 12242 divgcdcoprmex 12243 1nprm 12255 dvdsnprmd 12266 isevengcd2 12299 m1dvdsndvds 12389 sgrppropd 12999 issubm2 13048 rngpropd 13454 rhmf1o 13667 isrim 13668 2lgslem1a 15245 |
Copyright terms: Public domain | W3C validator |