![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bicomd | GIF version |
Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bicomd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bicomd | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bicom 139 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
3 | 1, 2 | sylib 121 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: impbid2 142 syl5ibr 155 ibir 176 bitr2d 188 bitr3d 189 bitr4d 190 syl5rbb 192 syl6rbb 196 pm5.5 241 anabs5 543 con2bidc 813 con1biidc 815 con2biidc 817 pm4.63dc 824 pm4.64dc 845 pm5.55dc 863 baibr 873 baibd 876 rbaibd 877 pm4.55dc 890 anordc 908 pm5.75 914 ninba 924 xor3dc 1333 3impexpbicomi 1383 cbvexh 1696 sbequ12r 1713 sbco 1902 sbcomxyyz 1906 sbal1yz 1937 cbvab 2222 nnedc 2272 necon3bbid 2307 necon2abiidc 2331 necon2bbiidc 2332 gencbvex 2687 gencbval 2689 sbhypf 2690 clel3g 2773 reu8 2833 sbceq2a 2872 sbcco2 2884 sbcsng 3529 ssdifsn 3598 opabid 4117 soeq2 4176 tfisi 4439 posng 4549 xpiindim 4614 fvopab6 5449 fconstfvm 5570 cbvfo 5618 cbvexfo 5619 f1eqcocnv 5624 isoid 5643 isoini 5651 resoprab2 5800 dfoprab3 6019 cnvoprab 6061 nnacan 6338 nnmcan 6345 isotilem 6808 eqinfti 6822 inflbti 6826 infglbti 6827 djuf1olem 6853 dfmpq2 7064 div4p1lem1div2 8825 ztri3or 8949 nn0ind-raph 9020 zindd 9021 qreccl 9284 iooshf 9576 fzofzim 9806 elfzomelpfzo 9849 zmodid2 9966 q2submod 9999 modfzo0difsn 10009 frec2uzltd 10017 frec2uzled 10043 prhash2ex 10396 iserex 10947 reef11 11204 absdvdsb 11306 dvdsabsb 11307 modmulconst 11320 dvdsadd 11331 dvdsabseq 11340 odd2np1 11365 mod2eq0even 11370 oddnn02np1 11372 oddge22np1 11373 evennn02n 11374 evennn2n 11375 zeo5 11380 gcdass 11496 lcmdvds 11553 lcmass 11559 divgcdcoprm0 11575 divgcdcoprmex 11576 1nprm 11588 dvdsnprmd 11599 isevengcd2 11629 bj-indeq 12712 |
Copyright terms: Public domain | W3C validator |