![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bicomd | GIF version |
Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bicomd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bicomd | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bicom 140 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: impbid2 143 imbitrrid 156 ibir 177 bitr2d 189 bitr3d 190 bitr4d 191 bitr2id 193 bitr2di 197 pm5.5 242 anabs5 573 con2bidc 876 con1biidc 878 con2biidc 880 pm4.63dc 887 pm4.64dc 901 pm5.55dc 914 baibr 921 baibd 924 rbaibd 925 pm5.75 964 ninba 974 xor3dc 1398 3impexpbicomi 1450 cbvexv1 1763 cbvexh 1766 sbequ12r 1783 sbco 1984 sbcomxyyz 1988 sbal1yz 2017 cbvab 2317 nnedc 2369 necon3bbid 2404 necon2abiidc 2428 necon2bbiidc 2429 sbralie 2744 gencbvex 2806 gencbval 2808 sbhypf 2809 clel3g 2894 reu8 2956 sbceq2a 2996 sbcco2 3008 sbcsng 3677 ssdifsn 3746 opabid 4286 soeq2 4347 tfisi 4619 posng 4731 xpiindim 4799 fvopab6 5654 fconstfvm 5776 cbvfo 5828 cbvexfo 5829 f1eqcocnv 5834 isoid 5853 isoini 5861 resoprab2 6015 dfoprab3 6244 cnvoprab 6287 nnacan 6565 nnmcan 6572 isotilem 7065 eqinfti 7079 inflbti 7083 infglbti 7084 djuf1olem 7112 dfmpq2 7415 axsuploc 8092 div4p1lem1div2 9236 ztri3or 9360 nn0ind-raph 9434 zindd 9435 qreccl 9707 elpq 9714 iooshf 10018 fzofzim 10255 elfzomelpfzo 10298 zmodid2 10423 q2submod 10456 modfzo0difsn 10466 frec2uzltd 10474 frec2uzled 10500 prhash2ex 10880 iserex 11482 prodrbdc 11717 reef11 11842 absdvdsb 11952 dvdsabsb 11953 modmulconst 11966 dvdsadd 11979 dvdsabseq 11989 odd2np1 12014 mod2eq0even 12019 oddnn02np1 12021 oddge22np1 12022 evennn02n 12023 evennn2n 12024 zeo5 12029 gcdass 12152 lcmdvds 12217 lcmass 12223 divgcdcoprm0 12239 divgcdcoprmex 12240 1nprm 12252 dvdsnprmd 12263 isevengcd2 12296 m1dvdsndvds 12386 sgrppropd 12996 issubm2 13045 rngpropd 13451 rhmf1o 13664 isrim 13665 |
Copyright terms: Public domain | W3C validator |