Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bicomd | GIF version |
Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bicomd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bicomd | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bicom 140 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: impbid2 143 syl5ibr 156 ibir 177 bitr2d 189 bitr3d 190 bitr4d 191 bitr2id 193 bitr2di 197 pm5.5 242 anabs5 573 con2bidc 875 con1biidc 877 con2biidc 879 pm4.63dc 886 pm4.64dc 900 pm5.55dc 913 baibr 920 baibd 923 rbaibd 924 pm4.55dc 938 anordc 956 pm5.75 962 ninba 972 xor3dc 1387 3impexpbicomi 1437 cbvexv1 1750 cbvexh 1753 sbequ12r 1770 sbco 1966 sbcomxyyz 1970 sbal1yz 1999 cbvab 2299 nnedc 2350 necon3bbid 2385 necon2abiidc 2409 necon2bbiidc 2410 sbralie 2719 gencbvex 2781 gencbval 2783 sbhypf 2784 clel3g 2869 reu8 2931 sbceq2a 2971 sbcco2 2983 sbcsng 3648 ssdifsn 3717 opabid 4251 soeq2 4310 tfisi 4580 posng 4692 xpiindim 4757 fvopab6 5604 fconstfvm 5726 cbvfo 5776 cbvexfo 5777 f1eqcocnv 5782 isoid 5801 isoini 5809 resoprab2 5962 dfoprab3 6182 cnvoprab 6225 nnacan 6503 nnmcan 6510 isotilem 6995 eqinfti 7009 inflbti 7013 infglbti 7014 djuf1olem 7042 dfmpq2 7329 axsuploc 8004 div4p1lem1div2 9143 ztri3or 9267 nn0ind-raph 9341 zindd 9342 qreccl 9613 elpq 9619 iooshf 9921 fzofzim 10156 elfzomelpfzo 10199 zmodid2 10320 q2submod 10353 modfzo0difsn 10363 frec2uzltd 10371 frec2uzled 10397 prhash2ex 10755 iserex 11313 prodrbdc 11548 reef11 11673 absdvdsb 11782 dvdsabsb 11783 modmulconst 11796 dvdsadd 11809 dvdsabseq 11818 odd2np1 11843 mod2eq0even 11848 oddnn02np1 11850 oddge22np1 11851 evennn02n 11852 evennn2n 11853 zeo5 11858 gcdass 11981 lcmdvds 12044 lcmass 12050 divgcdcoprm0 12066 divgcdcoprmex 12067 1nprm 12079 dvdsnprmd 12090 isevengcd2 12123 m1dvdsndvds 12213 |
Copyright terms: Public domain | W3C validator |