Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bicomd | GIF version |
Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bicomd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bicomd | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bicom 139 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
3 | 1, 2 | sylib 121 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: impbid2 142 syl5ibr 155 ibir 176 bitr2d 188 bitr3d 189 bitr4d 190 bitr2id 192 bitr2di 196 pm5.5 241 anabs5 568 con2bidc 870 con1biidc 872 con2biidc 874 pm4.63dc 881 pm4.64dc 895 pm5.55dc 908 baibr 915 baibd 918 rbaibd 919 pm4.55dc 933 anordc 951 pm5.75 957 ninba 967 xor3dc 1382 3impexpbicomi 1432 cbvexv1 1745 cbvexh 1748 sbequ12r 1765 sbco 1961 sbcomxyyz 1965 sbal1yz 1994 cbvab 2294 nnedc 2345 necon3bbid 2380 necon2abiidc 2404 necon2bbiidc 2405 sbralie 2714 gencbvex 2776 gencbval 2778 sbhypf 2779 clel3g 2864 reu8 2926 sbceq2a 2965 sbcco2 2977 sbcsng 3642 ssdifsn 3711 opabid 4242 soeq2 4301 tfisi 4571 posng 4683 xpiindim 4748 fvopab6 5592 fconstfvm 5714 cbvfo 5764 cbvexfo 5765 f1eqcocnv 5770 isoid 5789 isoini 5797 resoprab2 5950 dfoprab3 6170 cnvoprab 6213 nnacan 6491 nnmcan 6498 isotilem 6983 eqinfti 6997 inflbti 7001 infglbti 7002 djuf1olem 7030 dfmpq2 7317 axsuploc 7992 div4p1lem1div2 9131 ztri3or 9255 nn0ind-raph 9329 zindd 9330 qreccl 9601 elpq 9607 iooshf 9909 fzofzim 10144 elfzomelpfzo 10187 zmodid2 10308 q2submod 10341 modfzo0difsn 10351 frec2uzltd 10359 frec2uzled 10385 prhash2ex 10744 iserex 11302 prodrbdc 11537 reef11 11662 absdvdsb 11771 dvdsabsb 11772 modmulconst 11785 dvdsadd 11798 dvdsabseq 11807 odd2np1 11832 mod2eq0even 11837 oddnn02np1 11839 oddge22np1 11840 evennn02n 11841 evennn2n 11842 zeo5 11847 gcdass 11970 lcmdvds 12033 lcmass 12039 divgcdcoprm0 12055 divgcdcoprmex 12056 1nprm 12068 dvdsnprmd 12079 isevengcd2 12112 m1dvdsndvds 12202 |
Copyright terms: Public domain | W3C validator |