| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicomd | GIF version | ||
| Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bicomd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bicomd | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bicom 140 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 imbitrrid 156 ibir 177 bitr2d 189 bitr3d 190 bitr4d 191 bitr2id 193 bitr2di 197 pm5.5 242 anabs5 573 con2bidc 877 con1biidc 879 con2biidc 881 pm4.63dc 888 pm4.64dc 902 pm5.55dc 915 baibr 922 baibd 925 rbaibd 926 pm5.75 965 ninba 975 xor3dc 1407 3impexpbicomi 1459 cbvexv1 1775 cbvexh 1778 sbequ12r 1795 sbco 1996 sbcomxyyz 2000 sbal1yz 2029 cbvab 2329 nnedc 2381 necon3bbid 2416 necon2abiidc 2440 necon2bbiidc 2441 sbralie 2756 gencbvex 2819 gencbval 2821 sbhypf 2822 clel3g 2907 reu8 2969 sbceq2a 3009 sbcco2 3021 sbcsng 3692 ssdifsn 3761 opabid 4302 soeq2 4363 tfisi 4635 posng 4747 xpiindim 4815 fvopab6 5676 fconstfvm 5802 cbvfo 5854 cbvexfo 5855 f1eqcocnv 5860 isoid 5879 isoini 5887 resoprab2 6042 dfoprab3 6277 cnvoprab 6320 nnacan 6598 nnmcan 6605 isotilem 7108 eqinfti 7122 inflbti 7126 infglbti 7127 djuf1olem 7155 dfmpq2 7468 axsuploc 8145 div4p1lem1div2 9291 ztri3or 9415 nn0ind-raph 9490 zindd 9491 qreccl 9763 elpq 9770 iooshf 10074 fzofzim 10312 elfzomelpfzo 10360 zmodid2 10497 q2submod 10530 modfzo0difsn 10540 frec2uzltd 10548 frec2uzled 10574 prhash2ex 10954 swrd0g 11113 iserex 11650 prodrbdc 11885 reef11 12010 absdvdsb 12120 dvdsabsb 12121 modmulconst 12134 dvdsadd 12147 dvdsabseq 12158 odd2np1 12184 mod2eq0even 12189 oddnn02np1 12191 oddge22np1 12192 evennn02n 12193 evennn2n 12194 zeo5 12199 gcdass 12336 lcmdvds 12401 lcmass 12407 divgcdcoprm0 12423 divgcdcoprmex 12424 1nprm 12436 dvdsnprmd 12447 isevengcd2 12480 m1dvdsndvds 12571 sgrppropd 13245 issubm2 13305 rngpropd 13717 rhmf1o 13930 isrim 13931 2lgslem1a 15565 |
| Copyright terms: Public domain | W3C validator |