| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicomd | GIF version | ||
| Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bicomd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bicomd | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bicom 140 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 imbitrrid 156 ibir 177 bitr2d 189 bitr3d 190 bitr4d 191 bitr2id 193 bitr2di 197 pm5.5 242 anabs5 573 con2bidc 876 con1biidc 878 con2biidc 880 pm4.63dc 887 pm4.64dc 901 pm5.55dc 914 baibr 921 baibd 924 rbaibd 925 pm5.75 964 ninba 974 xor3dc 1398 3impexpbicomi 1450 cbvexv1 1766 cbvexh 1769 sbequ12r 1786 sbco 1987 sbcomxyyz 1991 sbal1yz 2020 cbvab 2320 nnedc 2372 necon3bbid 2407 necon2abiidc 2431 necon2bbiidc 2432 sbralie 2747 gencbvex 2810 gencbval 2812 sbhypf 2813 clel3g 2898 reu8 2960 sbceq2a 3000 sbcco2 3012 sbcsng 3682 ssdifsn 3751 opabid 4291 soeq2 4352 tfisi 4624 posng 4736 xpiindim 4804 fvopab6 5661 fconstfvm 5783 cbvfo 5835 cbvexfo 5836 f1eqcocnv 5841 isoid 5860 isoini 5868 resoprab2 6023 dfoprab3 6258 cnvoprab 6301 nnacan 6579 nnmcan 6586 isotilem 7081 eqinfti 7095 inflbti 7099 infglbti 7100 djuf1olem 7128 dfmpq2 7441 axsuploc 8118 div4p1lem1div2 9264 ztri3or 9388 nn0ind-raph 9462 zindd 9463 qreccl 9735 elpq 9742 iooshf 10046 fzofzim 10283 elfzomelpfzo 10326 zmodid2 10463 q2submod 10496 modfzo0difsn 10506 frec2uzltd 10514 frec2uzled 10540 prhash2ex 10920 iserex 11523 prodrbdc 11758 reef11 11883 absdvdsb 11993 dvdsabsb 11994 modmulconst 12007 dvdsadd 12020 dvdsabseq 12031 odd2np1 12057 mod2eq0even 12062 oddnn02np1 12064 oddge22np1 12065 evennn02n 12066 evennn2n 12067 zeo5 12072 gcdass 12209 lcmdvds 12274 lcmass 12280 divgcdcoprm0 12296 divgcdcoprmex 12297 1nprm 12309 dvdsnprmd 12320 isevengcd2 12353 m1dvdsndvds 12444 sgrppropd 13117 issubm2 13177 rngpropd 13589 rhmf1o 13802 isrim 13803 2lgslem1a 15437 |
| Copyright terms: Public domain | W3C validator |