| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicomd | GIF version | ||
| Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bicomd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bicomd | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bicom 140 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 imbitrrid 156 ibir 177 bitr2d 189 bitr3d 190 bitr4d 191 bitr2id 193 bitr2di 197 pm5.5 242 anabs5 573 con2bidc 876 con1biidc 878 con2biidc 880 pm4.63dc 887 pm4.64dc 901 pm5.55dc 914 baibr 921 baibd 924 rbaibd 925 pm5.75 964 ninba 974 xor3dc 1406 3impexpbicomi 1458 cbvexv1 1774 cbvexh 1777 sbequ12r 1794 sbco 1995 sbcomxyyz 1999 sbal1yz 2028 cbvab 2328 nnedc 2380 necon3bbid 2415 necon2abiidc 2439 necon2bbiidc 2440 sbralie 2755 gencbvex 2818 gencbval 2820 sbhypf 2821 clel3g 2906 reu8 2968 sbceq2a 3008 sbcco2 3020 sbcsng 3691 ssdifsn 3760 opabid 4301 soeq2 4362 tfisi 4634 posng 4746 xpiindim 4814 fvopab6 5675 fconstfvm 5801 cbvfo 5853 cbvexfo 5854 f1eqcocnv 5859 isoid 5878 isoini 5886 resoprab2 6041 dfoprab3 6276 cnvoprab 6319 nnacan 6597 nnmcan 6604 isotilem 7107 eqinfti 7121 inflbti 7125 infglbti 7126 djuf1olem 7154 dfmpq2 7467 axsuploc 8144 div4p1lem1div2 9290 ztri3or 9414 nn0ind-raph 9489 zindd 9490 qreccl 9762 elpq 9769 iooshf 10073 fzofzim 10310 elfzomelpfzo 10358 zmodid2 10495 q2submod 10528 modfzo0difsn 10538 frec2uzltd 10546 frec2uzled 10572 prhash2ex 10952 iserex 11621 prodrbdc 11856 reef11 11981 absdvdsb 12091 dvdsabsb 12092 modmulconst 12105 dvdsadd 12118 dvdsabseq 12129 odd2np1 12155 mod2eq0even 12160 oddnn02np1 12162 oddge22np1 12163 evennn02n 12164 evennn2n 12165 zeo5 12170 gcdass 12307 lcmdvds 12372 lcmass 12378 divgcdcoprm0 12394 divgcdcoprmex 12395 1nprm 12407 dvdsnprmd 12418 isevengcd2 12451 m1dvdsndvds 12542 sgrppropd 13216 issubm2 13276 rngpropd 13688 rhmf1o 13901 isrim 13902 2lgslem1a 15536 |
| Copyright terms: Public domain | W3C validator |