| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicomd | GIF version | ||
| Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bicomd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bicomd | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bicom 140 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 imbitrrid 156 ibir 177 bitr2d 189 bitr3d 190 bitr4d 191 bitr2id 193 bitr2di 197 pm5.5 242 anabs5 573 con2bidc 876 con1biidc 878 con2biidc 880 pm4.63dc 887 pm4.64dc 901 pm5.55dc 914 baibr 921 baibd 924 rbaibd 925 pm5.75 964 ninba 974 xor3dc 1398 3impexpbicomi 1450 cbvexv1 1766 cbvexh 1769 sbequ12r 1786 sbco 1987 sbcomxyyz 1991 sbal1yz 2020 cbvab 2320 nnedc 2372 necon3bbid 2407 necon2abiidc 2431 necon2bbiidc 2432 sbralie 2747 gencbvex 2810 gencbval 2812 sbhypf 2813 clel3g 2898 reu8 2960 sbceq2a 3000 sbcco2 3012 sbcsng 3681 ssdifsn 3750 opabid 4290 soeq2 4351 tfisi 4623 posng 4735 xpiindim 4803 fvopab6 5658 fconstfvm 5780 cbvfo 5832 cbvexfo 5833 f1eqcocnv 5838 isoid 5857 isoini 5865 resoprab2 6019 dfoprab3 6249 cnvoprab 6292 nnacan 6570 nnmcan 6577 isotilem 7072 eqinfti 7086 inflbti 7090 infglbti 7091 djuf1olem 7119 dfmpq2 7422 axsuploc 8099 div4p1lem1div2 9245 ztri3or 9369 nn0ind-raph 9443 zindd 9444 qreccl 9716 elpq 9723 iooshf 10027 fzofzim 10264 elfzomelpfzo 10307 zmodid2 10444 q2submod 10477 modfzo0difsn 10487 frec2uzltd 10495 frec2uzled 10521 prhash2ex 10901 iserex 11504 prodrbdc 11739 reef11 11864 absdvdsb 11974 dvdsabsb 11975 modmulconst 11988 dvdsadd 12001 dvdsabseq 12012 odd2np1 12038 mod2eq0even 12043 oddnn02np1 12045 oddge22np1 12046 evennn02n 12047 evennn2n 12048 zeo5 12053 gcdass 12182 lcmdvds 12247 lcmass 12253 divgcdcoprm0 12269 divgcdcoprmex 12270 1nprm 12282 dvdsnprmd 12293 isevengcd2 12326 m1dvdsndvds 12417 sgrppropd 13056 issubm2 13105 rngpropd 13511 rhmf1o 13724 isrim 13725 2lgslem1a 15329 |
| Copyright terms: Public domain | W3C validator |