Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bicomd | GIF version |
Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
bicomd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bicomd | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | bicom 139 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
3 | 1, 2 | sylib 121 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: impbid2 142 syl5ibr 155 ibir 176 bitr2d 188 bitr3d 189 bitr4d 190 bitr2id 192 bitr2di 196 pm5.5 241 anabs5 563 con2bidc 865 con1biidc 867 con2biidc 869 pm4.63dc 876 pm4.64dc 890 pm5.55dc 903 baibr 910 baibd 913 rbaibd 914 pm4.55dc 928 anordc 946 pm5.75 952 ninba 962 xor3dc 1377 3impexpbicomi 1427 cbvexv1 1740 cbvexh 1743 sbequ12r 1760 sbco 1956 sbcomxyyz 1960 sbal1yz 1989 cbvab 2290 nnedc 2341 necon3bbid 2376 necon2abiidc 2400 necon2bbiidc 2401 sbralie 2710 gencbvex 2772 gencbval 2774 sbhypf 2775 clel3g 2860 reu8 2922 sbceq2a 2961 sbcco2 2973 sbcsng 3635 ssdifsn 3704 opabid 4235 soeq2 4294 tfisi 4564 posng 4676 xpiindim 4741 fvopab6 5582 fconstfvm 5703 cbvfo 5753 cbvexfo 5754 f1eqcocnv 5759 isoid 5778 isoini 5786 resoprab2 5939 dfoprab3 6159 cnvoprab 6202 nnacan 6480 nnmcan 6487 isotilem 6971 eqinfti 6985 inflbti 6989 infglbti 6990 djuf1olem 7018 dfmpq2 7296 axsuploc 7971 div4p1lem1div2 9110 ztri3or 9234 nn0ind-raph 9308 zindd 9309 qreccl 9580 elpq 9586 iooshf 9888 fzofzim 10123 elfzomelpfzo 10166 zmodid2 10287 q2submod 10320 modfzo0difsn 10330 frec2uzltd 10338 frec2uzled 10364 prhash2ex 10722 iserex 11280 prodrbdc 11515 reef11 11640 absdvdsb 11749 dvdsabsb 11750 modmulconst 11763 dvdsadd 11776 dvdsabseq 11785 odd2np1 11810 mod2eq0even 11815 oddnn02np1 11817 oddge22np1 11818 evennn02n 11819 evennn2n 11820 zeo5 11825 gcdass 11948 lcmdvds 12011 lcmass 12017 divgcdcoprm0 12033 divgcdcoprmex 12034 1nprm 12046 dvdsnprmd 12057 isevengcd2 12090 m1dvdsndvds 12180 |
Copyright terms: Public domain | W3C validator |