| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicomd | GIF version | ||
| Description: Commute two sides of a biconditional in a deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| bicomd.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bicomd | ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicomd.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | bicom 140 | . 2 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → (𝜒 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 imbitrrid 156 ibir 177 bitr2d 189 bitr3d 190 bitr4d 191 bitr2id 193 bitr2di 197 pm5.5 242 anabs5 573 con2bidc 876 con1biidc 878 con2biidc 880 pm4.63dc 887 pm4.64dc 901 pm5.55dc 914 baibr 921 baibd 924 rbaibd 925 pm5.75 964 ninba 974 xor3dc 1398 3impexpbicomi 1450 cbvexv1 1766 cbvexh 1769 sbequ12r 1786 sbco 1987 sbcomxyyz 1991 sbal1yz 2020 cbvab 2320 nnedc 2372 necon3bbid 2407 necon2abiidc 2431 necon2bbiidc 2432 sbralie 2747 gencbvex 2810 gencbval 2812 sbhypf 2813 clel3g 2898 reu8 2960 sbceq2a 3000 sbcco2 3012 sbcsng 3682 ssdifsn 3751 opabid 4291 soeq2 4352 tfisi 4624 posng 4736 xpiindim 4804 fvopab6 5661 fconstfvm 5783 cbvfo 5835 cbvexfo 5836 f1eqcocnv 5841 isoid 5860 isoini 5868 resoprab2 6023 dfoprab3 6258 cnvoprab 6301 nnacan 6579 nnmcan 6586 isotilem 7081 eqinfti 7095 inflbti 7099 infglbti 7100 djuf1olem 7128 dfmpq2 7439 axsuploc 8116 div4p1lem1div2 9262 ztri3or 9386 nn0ind-raph 9460 zindd 9461 qreccl 9733 elpq 9740 iooshf 10044 fzofzim 10281 elfzomelpfzo 10324 zmodid2 10461 q2submod 10494 modfzo0difsn 10504 frec2uzltd 10512 frec2uzled 10538 prhash2ex 10918 iserex 11521 prodrbdc 11756 reef11 11881 absdvdsb 11991 dvdsabsb 11992 modmulconst 12005 dvdsadd 12018 dvdsabseq 12029 odd2np1 12055 mod2eq0even 12060 oddnn02np1 12062 oddge22np1 12063 evennn02n 12064 evennn2n 12065 zeo5 12070 gcdass 12207 lcmdvds 12272 lcmass 12278 divgcdcoprm0 12294 divgcdcoprmex 12295 1nprm 12307 dvdsnprmd 12318 isevengcd2 12351 m1dvdsndvds 12442 sgrppropd 13115 issubm2 13175 rngpropd 13587 rhmf1o 13800 isrim 13801 2lgslem1a 15413 |
| Copyright terms: Public domain | W3C validator |