| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfandc | GIF version | ||
| Description: Definition of 'and' in terms of negation and implication, for decidable propositions. The forward direction holds for all propositions, and can (basically) be found at pm3.2im 640. (Contributed by Jim Kingdon, 30-Apr-2018.) |
| Ref | Expression |
|---|---|
| dfandc | ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2im 640 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) | |
| 2 | 1 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
| 3 | simplimdc 865 | . . . . . . 7 ⊢ (DECID 𝜑 → (¬ (𝜑 → ¬ 𝜓) → 𝜑)) | |
| 4 | 3 | adantr 276 | . . . . . 6 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 → ¬ 𝜓) → 𝜑)) |
| 5 | 4 | imp 124 | . . . . 5 ⊢ (((DECID 𝜑 ∧ DECID 𝜓) ∧ ¬ (𝜑 → ¬ 𝜓)) → 𝜑) |
| 6 | simprimdc 864 | . . . . . . 7 ⊢ (DECID 𝜓 → (¬ (𝜑 → ¬ 𝜓) → 𝜓)) | |
| 7 | 6 | adantl 277 | . . . . . 6 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 → ¬ 𝜓) → 𝜓)) |
| 8 | 7 | imp 124 | . . . . 5 ⊢ (((DECID 𝜑 ∧ DECID 𝜓) ∧ ¬ (𝜑 → ¬ 𝜓)) → 𝜓) |
| 9 | 5, 8 | jca 306 | . . . 4 ⊢ (((DECID 𝜑 ∧ DECID 𝜓) ∧ ¬ (𝜑 → ¬ 𝜓)) → (𝜑 ∧ 𝜓)) |
| 10 | 9 | ex 115 | . . 3 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → (¬ (𝜑 → ¬ 𝜓) → (𝜑 ∧ 𝜓))) |
| 11 | 2, 10 | impbid2 143 | . 2 ⊢ ((DECID 𝜑 ∧ DECID 𝜓) → ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))) |
| 12 | 11 | ex 115 | 1 ⊢ (DECID 𝜑 → (DECID 𝜓 → ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 |
| This theorem is referenced by: pm4.63dc 891 pm4.54dc 907 |
| Copyright terms: Public domain | W3C validator |