ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.76 GIF version

Theorem pm4.76 604
Description: Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.76 (((𝜑𝜓) ∧ (𝜑𝜒)) ↔ (𝜑 → (𝜓𝜒)))

Proof of Theorem pm4.76
StepHypRef Expression
1 jcab 603 . 2 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
21bicomi 132 1 (((𝜑𝜓) ∧ (𝜑𝜒)) ↔ (𝜑 → (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  sbanv  1889  fun11  5285
  Copyright terms: Public domain W3C validator