Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm4.76 | GIF version |
Description: Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm4.76 | ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcab 598 | . 2 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) | |
2 | 1 | bicomi 131 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sbanv 1882 fun11 5265 |
Copyright terms: Public domain | W3C validator |