ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.76 Unicode version

Theorem pm4.76 599
Description: Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.76  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  /\  ch ) ) )

Proof of Theorem pm4.76
StepHypRef Expression
1 jcab 598 . 2  |-  ( (
ph  ->  ( ps  /\  ch ) )  <->  ( ( ph  ->  ps )  /\  ( ph  ->  ch )
) )
21bicomi 131 1  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  /\  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sbanv  1882  fun11  5265
  Copyright terms: Public domain W3C validator