ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun11 GIF version

Theorem fun11 5034
Description: Two ways of stating that 𝐴 is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.)
Assertion
Ref Expression
fun11 ((Fun 𝐴 ∧ Fun 𝐴) ↔ ∀𝑥𝑦𝑧𝑤((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝐴

Proof of Theorem fun11
StepHypRef Expression
1 dfbi2 380 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) ↔ ((𝑥 = 𝑧𝑦 = 𝑤) ∧ (𝑦 = 𝑤𝑥 = 𝑧)))
21imbi2i 224 . . . . . . 7 (((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ((𝑥𝐴𝑦𝑧𝐴𝑤) → ((𝑥 = 𝑧𝑦 = 𝑤) ∧ (𝑦 = 𝑤𝑥 = 𝑧))))
3 pm4.76 569 . . . . . . 7 ((((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)) ∧ ((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑦 = 𝑤𝑥 = 𝑧))) ↔ ((𝑥𝐴𝑦𝑧𝐴𝑤) → ((𝑥 = 𝑧𝑦 = 𝑤) ∧ (𝑦 = 𝑤𝑥 = 𝑧))))
4 bi2.04 246 . . . . . . . 8 (((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)))
5 bi2.04 246 . . . . . . . 8 (((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑦 = 𝑤𝑥 = 𝑧)) ↔ (𝑦 = 𝑤 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑥 = 𝑧)))
64, 5anbi12i 448 . . . . . . 7 ((((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)) ∧ ((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑦 = 𝑤𝑥 = 𝑧))) ↔ ((𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑥 = 𝑧))))
72, 3, 63bitr2i 206 . . . . . 6 (((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ((𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑥 = 𝑧))))
872albii 1401 . . . . 5 (∀𝑥𝑦((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑥𝑦((𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑥 = 𝑧))))
9 19.26-2 1412 . . . . 5 (∀𝑥𝑦((𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑥 = 𝑧))) ↔ (∀𝑥𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ ∀𝑥𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑥 = 𝑧))))
10 alcom 1408 . . . . . . 7 (∀𝑥𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ∀𝑦𝑥(𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)))
11 nfv 1462 . . . . . . . . 9 𝑥((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)
12 breq1 3814 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥𝐴𝑦𝑧𝐴𝑦))
1312anbi1d 453 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) ↔ (𝑧𝐴𝑦𝑧𝐴𝑤)))
1413imbi1d 229 . . . . . . . . 9 (𝑥 = 𝑧 → (((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤) ↔ ((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)))
1511, 14equsal 1657 . . . . . . . 8 (∀𝑥(𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤))
1615albii 1400 . . . . . . 7 (∀𝑦𝑥(𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ∀𝑦((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤))
1710, 16bitri 182 . . . . . 6 (∀𝑥𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ∀𝑦((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤))
18 nfv 1462 . . . . . . . 8 𝑦((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧)
19 breq2 3815 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑥𝐴𝑦𝑥𝐴𝑤))
2019anbi1d 453 . . . . . . . . 9 (𝑦 = 𝑤 → ((𝑥𝐴𝑦𝑧𝐴𝑤) ↔ (𝑥𝐴𝑤𝑧𝐴𝑤)))
2120imbi1d 229 . . . . . . . 8 (𝑦 = 𝑤 → (((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧)))
2218, 21equsal 1657 . . . . . . 7 (∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ ((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧))
2322albii 1400 . . . . . 6 (∀𝑥𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ ∀𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧))
2417, 23anbi12i 448 . . . . 5 ((∀𝑥𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ ∀𝑥𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦𝑧𝐴𝑤) → 𝑥 = 𝑧))) ↔ (∀𝑦((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧)))
258, 9, 243bitri 204 . . . 4 (∀𝑥𝑦((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ (∀𝑦((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧)))
26252albii 1401 . . 3 (∀𝑧𝑤𝑥𝑦((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑧𝑤(∀𝑦((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧)))
27 19.26-2 1412 . . 3 (∀𝑧𝑤(∀𝑦((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ (∀𝑧𝑤𝑦((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑧𝑤𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧)))
2826, 27bitr2i 183 . 2 ((∀𝑧𝑤𝑦((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑧𝑤𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ ∀𝑧𝑤𝑥𝑦((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)))
29 fun2cnv 5031 . . . 4 (Fun 𝐴 ↔ ∀𝑧∃*𝑦 𝑧𝐴𝑦)
30 breq2 3815 . . . . . 6 (𝑦 = 𝑤 → (𝑧𝐴𝑦𝑧𝐴𝑤))
3130mo4 2004 . . . . 5 (∃*𝑦 𝑧𝐴𝑦 ↔ ∀𝑦𝑤((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤))
3231albii 1400 . . . 4 (∀𝑧∃*𝑦 𝑧𝐴𝑦 ↔ ∀𝑧𝑦𝑤((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤))
33 alcom 1408 . . . . 5 (∀𝑦𝑤((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤) ↔ ∀𝑤𝑦((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤))
3433albii 1400 . . . 4 (∀𝑧𝑦𝑤((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤) ↔ ∀𝑧𝑤𝑦((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤))
3529, 32, 343bitri 204 . . 3 (Fun 𝐴 ↔ ∀𝑧𝑤𝑦((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤))
36 funcnv2 5027 . . . 4 (Fun 𝐴 ↔ ∀𝑤∃*𝑥 𝑥𝐴𝑤)
37 breq1 3814 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑤𝑧𝐴𝑤))
3837mo4 2004 . . . . 5 (∃*𝑥 𝑥𝐴𝑤 ↔ ∀𝑥𝑧((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧))
3938albii 1400 . . . 4 (∀𝑤∃*𝑥 𝑥𝐴𝑤 ↔ ∀𝑤𝑥𝑧((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧))
40 alcom 1408 . . . . . 6 (∀𝑥𝑧((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑧𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧))
4140albii 1400 . . . . 5 (∀𝑤𝑥𝑧((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑤𝑧𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧))
42 alcom 1408 . . . . 5 (∀𝑤𝑧𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑧𝑤𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧))
4341, 42bitri 182 . . . 4 (∀𝑤𝑥𝑧((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑧𝑤𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧))
4436, 39, 433bitri 204 . . 3 (Fun 𝐴 ↔ ∀𝑧𝑤𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧))
4535, 44anbi12i 448 . 2 ((Fun 𝐴 ∧ Fun 𝐴) ↔ (∀𝑧𝑤𝑦((𝑧𝐴𝑦𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑧𝑤𝑥((𝑥𝐴𝑤𝑧𝐴𝑤) → 𝑥 = 𝑧)))
46 alrot4 1416 . 2 (∀𝑥𝑦𝑧𝑤((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑧𝑤𝑥𝑦((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)))
4728, 45, 463bitr4i 210 1 ((Fun 𝐴 ∧ Fun 𝐴) ↔ ∀𝑥𝑦𝑧𝑤((𝑥𝐴𝑦𝑧𝐴𝑤) → (𝑥 = 𝑧𝑦 = 𝑤)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wal 1283  ∃*wmo 1944   class class class wbr 3811  ccnv 4400  Fun wfun 4963
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-br 3812  df-opab 3866  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-fun 4971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator