Proof of Theorem fun11
Step | Hyp | Ref
| Expression |
1 | | dfbi2 386 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ↔ 𝑦 = 𝑤) ↔ ((𝑥 = 𝑧 → 𝑦 = 𝑤) ∧ (𝑦 = 𝑤 → 𝑥 = 𝑧))) |
2 | 1 | imbi2i 225 |
. . . . . . 7
⊢ (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → ((𝑥 = 𝑧 → 𝑦 = 𝑤) ∧ (𝑦 = 𝑤 → 𝑥 = 𝑧)))) |
3 | | pm4.76 599 |
. . . . . . 7
⊢ ((((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 → 𝑦 = 𝑤)) ∧ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑦 = 𝑤 → 𝑥 = 𝑧))) ↔ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → ((𝑥 = 𝑧 → 𝑦 = 𝑤) ∧ (𝑦 = 𝑤 → 𝑥 = 𝑧)))) |
4 | | bi2.04 247 |
. . . . . . . 8
⊢ (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 → 𝑦 = 𝑤)) ↔ (𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤))) |
5 | | bi2.04 247 |
. . . . . . . 8
⊢ (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑦 = 𝑤 → 𝑥 = 𝑧)) ↔ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
6 | 4, 5 | anbi12i 457 |
. . . . . . 7
⊢ ((((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 → 𝑦 = 𝑤)) ∧ ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑦 = 𝑤 → 𝑥 = 𝑧))) ↔ ((𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)))) |
7 | 2, 3, 6 | 3bitr2i 207 |
. . . . . 6
⊢ (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ((𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)))) |
8 | 7 | 2albii 1464 |
. . . . 5
⊢
(∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)))) |
9 | | 19.26-2 1475 |
. . . . 5
⊢
(∀𝑥∀𝑦((𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) ↔ (∀𝑥∀𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ ∀𝑥∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)))) |
10 | | alcom 1471 |
. . . . . . 7
⊢
(∀𝑥∀𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ∀𝑦∀𝑥(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤))) |
11 | | nfv 1521 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) |
12 | | breq1 3992 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑥𝐴𝑦 ↔ 𝑧𝐴𝑦)) |
13 | 12 | anbi1d 462 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) ↔ (𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤))) |
14 | 13 | imbi1d 230 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ↔ ((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤))) |
15 | 11, 14 | equsal 1720 |
. . . . . . . 8
⊢
(∀𝑥(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
16 | 15 | albii 1463 |
. . . . . . 7
⊢
(∀𝑦∀𝑥(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
17 | 10, 16 | bitri 183 |
. . . . . 6
⊢
(∀𝑥∀𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ↔ ∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
18 | | nfv 1521 |
. . . . . . . 8
⊢
Ⅎ𝑦((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) |
19 | | breq2 3993 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑥𝐴𝑦 ↔ 𝑥𝐴𝑤)) |
20 | 19 | anbi1d 462 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) ↔ (𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤))) |
21 | 20 | imbi1d 230 |
. . . . . . . 8
⊢ (𝑦 = 𝑤 → (((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
22 | 18, 21 | equsal 1720 |
. . . . . . 7
⊢
(∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ ((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
23 | 22 | albii 1463 |
. . . . . 6
⊢
(∀𝑥∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
24 | 17, 23 | anbi12i 457 |
. . . . 5
⊢
((∀𝑥∀𝑦(𝑥 = 𝑧 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) ∧ ∀𝑥∀𝑦(𝑦 = 𝑤 → ((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) ↔ (∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
25 | 8, 9, 24 | 3bitri 205 |
. . . 4
⊢
(∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ (∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
26 | 25 | 2albii 1464 |
. . 3
⊢
(∀𝑧∀𝑤∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ∀𝑧∀𝑤(∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
27 | | 19.26-2 1475 |
. . 3
⊢
(∀𝑧∀𝑤(∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ (∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
28 | 26, 27 | bitr2i 184 |
. 2
⊢
((∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) ↔ ∀𝑧∀𝑤∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤))) |
29 | | fun2cnv 5262 |
. . . 4
⊢ (Fun
◡◡𝐴 ↔ ∀𝑧∃*𝑦 𝑧𝐴𝑦) |
30 | | breq2 3993 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝑧𝐴𝑦 ↔ 𝑧𝐴𝑤)) |
31 | 30 | mo4 2080 |
. . . . 5
⊢
(∃*𝑦 𝑧𝐴𝑦 ↔ ∀𝑦∀𝑤((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
32 | 31 | albii 1463 |
. . . 4
⊢
(∀𝑧∃*𝑦 𝑧𝐴𝑦 ↔ ∀𝑧∀𝑦∀𝑤((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
33 | | alcom 1471 |
. . . . 5
⊢
(∀𝑦∀𝑤((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ↔ ∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
34 | 33 | albii 1463 |
. . . 4
⊢
(∀𝑧∀𝑦∀𝑤((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ↔ ∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
35 | 29, 32, 34 | 3bitri 205 |
. . 3
⊢ (Fun
◡◡𝐴 ↔ ∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤)) |
36 | | funcnv2 5258 |
. . . 4
⊢ (Fun
◡𝐴 ↔ ∀𝑤∃*𝑥 𝑥𝐴𝑤) |
37 | | breq1 3992 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑥𝐴𝑤 ↔ 𝑧𝐴𝑤)) |
38 | 37 | mo4 2080 |
. . . . 5
⊢
(∃*𝑥 𝑥𝐴𝑤 ↔ ∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
39 | 38 | albii 1463 |
. . . 4
⊢
(∀𝑤∃*𝑥 𝑥𝐴𝑤 ↔ ∀𝑤∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
40 | | alcom 1471 |
. . . . . 6
⊢
(∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑧∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
41 | 40 | albii 1463 |
. . . . 5
⊢
(∀𝑤∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑤∀𝑧∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
42 | | alcom 1471 |
. . . . 5
⊢
(∀𝑤∀𝑧∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
43 | 41, 42 | bitri 183 |
. . . 4
⊢
(∀𝑤∀𝑥∀𝑧((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧) ↔ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
44 | 36, 39, 43 | 3bitri 205 |
. . 3
⊢ (Fun
◡𝐴 ↔ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧)) |
45 | 35, 44 | anbi12i 457 |
. 2
⊢ ((Fun
◡◡𝐴 ∧ Fun ◡𝐴) ↔ (∀𝑧∀𝑤∀𝑦((𝑧𝐴𝑦 ∧ 𝑧𝐴𝑤) → 𝑦 = 𝑤) ∧ ∀𝑧∀𝑤∀𝑥((𝑥𝐴𝑤 ∧ 𝑧𝐴𝑤) → 𝑥 = 𝑧))) |
46 | | alrot4 1479 |
. 2
⊢
(∀𝑥∀𝑦∀𝑧∀𝑤((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤)) ↔ ∀𝑧∀𝑤∀𝑥∀𝑦((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤))) |
47 | 28, 45, 46 | 3bitr4i 211 |
1
⊢ ((Fun
◡◡𝐴 ∧ Fun ◡𝐴) ↔ ∀𝑥∀𝑦∀𝑧∀𝑤((𝑥𝐴𝑦 ∧ 𝑧𝐴𝑤) → (𝑥 = 𝑧 ↔ 𝑦 = 𝑤))) |