| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > jcab | GIF version | ||
| Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| jcab | ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | imim2i 12 | . . 3 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜓)) | 
| 3 | simpr 110 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
| 4 | 3 | imim2i 12 | . . 3 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜒)) | 
| 5 | 2, 4 | jca 306 | . 2 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) | 
| 6 | pm3.43 602 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∧ 𝜒))) | |
| 7 | 5, 6 | impbii 126 | 1 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: pm4.76 604 pm5.44 926 2eu4 2138 ssconb 3296 ssin 3385 raaan 3556 tfri3 6425 omniwomnimkv 7233 isprm2 12285 lgsquad2lem2 15323 | 
| Copyright terms: Public domain | W3C validator |