| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbanv | GIF version | ||
| Description: Version of sban 1974 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 24-Dec-2017.) |
| Ref | Expression |
|---|---|
| sbanv | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb6 1901 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 ∧ 𝜓))) | |
| 2 | sb6 1901 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 3 | sb6 1901 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) | |
| 4 | 2, 3 | anbi12i 460 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
| 5 | 19.26 1495 | . . 3 ⊢ (∀𝑥((𝑥 = 𝑦 → 𝜑) ∧ (𝑥 = 𝑦 → 𝜓)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜓))) | |
| 6 | pm4.76 604 | . . . 4 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ (𝑥 = 𝑦 → 𝜓)) ↔ (𝑥 = 𝑦 → (𝜑 ∧ 𝜓))) | |
| 7 | 6 | albii 1484 | . . 3 ⊢ (∀𝑥((𝑥 = 𝑦 → 𝜑) ∧ (𝑥 = 𝑦 → 𝜓)) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 ∧ 𝜓))) |
| 8 | 4, 5, 7 | 3bitr2i 208 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 ∧ 𝜓))) |
| 9 | 1, 8 | bitr4i 187 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1362 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: sban 1974 |
| Copyright terms: Public domain | W3C validator |