Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbanv | GIF version |
Description: Version of sban 1948 where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 24-Dec-2017.) |
Ref | Expression |
---|---|
sbanv | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 1879 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 ∧ 𝜓))) | |
2 | sb6 1879 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | sb6 1879 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜓 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜓)) | |
4 | 2, 3 | anbi12i 457 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
5 | 19.26 1474 | . . 3 ⊢ (∀𝑥((𝑥 = 𝑦 → 𝜑) ∧ (𝑥 = 𝑦 → 𝜓)) ↔ (∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑥(𝑥 = 𝑦 → 𝜓))) | |
6 | pm4.76 599 | . . . 4 ⊢ (((𝑥 = 𝑦 → 𝜑) ∧ (𝑥 = 𝑦 → 𝜓)) ↔ (𝑥 = 𝑦 → (𝜑 ∧ 𝜓))) | |
7 | 6 | albii 1463 | . . 3 ⊢ (∀𝑥((𝑥 = 𝑦 → 𝜑) ∧ (𝑥 = 𝑦 → 𝜓)) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 ∧ 𝜓))) |
8 | 4, 5, 7 | 3bitr2i 207 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 ∧ 𝜓))) |
9 | 1, 8 | bitr4i 186 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-sb 1756 |
This theorem is referenced by: sban 1948 |
Copyright terms: Public domain | W3C validator |