| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm3.44 | GIF version | ||
| Description: Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
| Ref | Expression |
|---|---|
| pm3.44 | ⊢ (((𝜓 → 𝜑) ∧ (𝜒 → 𝜑)) → ((𝜓 ∨ 𝜒) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaob 711 | . 2 ⊢ (((𝜓 ∨ 𝜒) → 𝜑) ↔ ((𝜓 → 𝜑) ∧ (𝜒 → 𝜑))) | |
| 2 | 1 | biimpri 133 | 1 ⊢ (((𝜓 → 𝜑) ∧ (𝜒 → 𝜑)) → ((𝜓 ∨ 𝜒) → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: jaoi 717 jao 756 pm2.6dc 863 pm4.83dc 953 |
| Copyright terms: Public domain | W3C validator |