| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid1 | GIF version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
| Ref | Expression |
|---|---|
| impbid1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| impbid1.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| impbid1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | impbid1.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 iba 300 ibar 301 pm4.81dc 909 pm5.63dc 948 pm4.83dc 953 pm5.71dc 963 19.33b2 1643 19.9t 1656 sb4b 1848 a16gb 1879 euor2 2103 eupickbi 2127 ceqsalg 2791 eqvincg 2888 ddifstab 3295 csbprc 3496 undif4 3513 eqifdc 3596 ifnebibdc 3604 sssnm 3784 sneqbg 3793 opthpr 3802 elpwuni 4006 ss1o0el1 4230 exmid01 4231 exmidundif 4239 eusv2i 4490 reusv3 4495 iunpw 4515 suc11g 4593 ssxpbm 5105 ssxp1 5106 ssxp2 5107 xp11m 5108 2elresin 5369 mpteqb 5652 f1fveq 5819 f1elima 5820 f1imass 5821 fliftf 5846 nnsucuniel 6553 iserd 6618 ecopovtrn 6691 ecopover 6692 ecopovtrng 6694 ecopoverg 6695 map0g 6747 fopwdom 6897 f1finf1o 7013 mkvprop 7224 addcanpig 7401 mulcanpig 7402 srpospr 7850 readdcan 8166 cnegexlem1 8201 addcan 8206 addcan2 8207 neg11 8277 negreb 8291 add20 8501 cru 8629 mulcanapd 8688 uz11 9624 eqreznegel 9688 lbzbi 9690 xneg11 9909 xnn0xadd0 9942 xsubge0 9956 elioc2 10011 elico2 10012 elicc2 10013 fzopth 10136 2ffzeq 10216 flqidz 10376 addmodlteq 10490 frec2uzrand 10497 nninfinf 10535 expcan 10808 nn0opthd 10814 fz1eqb 10882 wrdnval 10965 eqwrd 10975 cj11 11070 sqrt0 11169 recan 11274 0dvds 11976 dvds1 12018 alzdvds 12019 nn0enne 12067 nn0oddm1d2 12074 nnoddm1d2 12075 divalgmod 12092 gcdeq0 12144 algcvgblem 12217 prmexpb 12319 4sqexercise2 12568 4sqlemsdc 12569 4sqlem11 12570 ennnfonelemim 12641 grprcan 13169 grplcan 13194 grpinv11 13201 isnzr2 13740 znidomb 14214 tgdom 14308 en1top 14313 hmeocnvb 14554 metrest 14742 perfect 15237 lgsne0 15279 2lgs 15345 2lgsoddprmlem3 15352 bj-nnbist 15390 bj-nnbidc 15403 bj-peano4 15601 bj-nn0sucALT 15624 |
| Copyright terms: Public domain | W3C validator |