| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid1 | GIF version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
| Ref | Expression |
|---|---|
| impbid1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| impbid1.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| impbid1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | impbid1.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 iba 300 ibar 301 pm4.81dc 913 pm5.63dc 952 pm4.83dc 957 pm5.71dc 967 19.33b2 1675 19.9t 1688 sb4b 1880 a16gb 1911 euor2 2136 eupickbi 2160 ceqsalg 2828 eqvincg 2927 ddifstab 3336 csbprc 3537 undif4 3554 eqifdc 3639 ifnebibdc 3648 ssprsseq 3829 sssnm 3831 sneqbg 3840 opthpr 3849 elpwuni 4054 ss1o0el1 4280 exmid01 4281 exmidundif 4289 eusv2i 4545 reusv3 4550 iunpw 4570 suc11g 4648 reldmm 4941 ssxpbm 5163 ssxp1 5164 ssxp2 5165 xp11m 5166 2elresin 5433 mpteqb 5724 f1fveq 5895 f1elima 5896 f1imass 5897 fliftf 5922 nnsucuniel 6639 iserd 6704 ecopovtrn 6777 ecopover 6778 ecopovtrng 6780 ecopoverg 6781 map0g 6833 fopwdom 6993 f1finf1o 7110 mkvprop 7321 addcanpig 7517 mulcanpig 7518 srpospr 7966 readdcan 8282 cnegexlem1 8317 addcan 8322 addcan2 8323 neg11 8393 negreb 8407 add20 8617 cru 8745 mulcanapd 8804 uz11 9741 eqreznegel 9805 lbzbi 9807 xneg11 10026 xnn0xadd0 10059 xsubge0 10073 elioc2 10128 elico2 10129 elicc2 10130 fzopth 10253 2ffzeq 10333 flqidz 10501 addmodlteq 10615 frec2uzrand 10622 nninfinf 10660 expcan 10933 nn0opthd 10939 fz1eqb 11007 wrdnval 11097 eqwrd 11107 wrdl1s1 11158 ccatopth 11243 ccatopth2 11244 cj11 11411 sqrt0 11510 recan 11615 0dvds 12317 dvds1 12359 alzdvds 12360 nn0enne 12408 nn0oddm1d2 12415 nnoddm1d2 12416 divalgmod 12433 gcdeq0 12493 algcvgblem 12566 prmexpb 12668 4sqexercise2 12917 4sqlemsdc 12918 4sqlem11 12919 ennnfonelemim 12990 grprcan 13565 grplcan 13590 grpinv11 13597 isnzr2 14142 znidomb 14616 tgdom 14740 en1top 14745 hmeocnvb 14986 metrest 15174 perfect 15669 lgsne0 15711 2lgs 15777 2lgsoddprmlem3 15784 wrdupgren 15890 wrdumgren 15900 usgrausgrben 15964 bj-nnbist 16066 bj-nnbidc 16079 bj-peano4 16276 bj-nn0sucALT 16299 |
| Copyright terms: Public domain | W3C validator |