![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbid1 | GIF version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
Ref | Expression |
---|---|
impbid1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
impbid1.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
impbid1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | impbid1.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: impbid2 143 iba 300 ibar 301 pm4.81dc 909 pm5.63dc 948 pm4.83dc 953 pm5.71dc 963 19.33b2 1640 19.9t 1653 sb4b 1845 a16gb 1876 euor2 2100 eupickbi 2124 ceqsalg 2788 eqvincg 2885 ddifstab 3292 csbprc 3493 undif4 3510 eqifdc 3593 ifnebibdc 3601 sssnm 3781 sneqbg 3790 opthpr 3799 elpwuni 4003 ss1o0el1 4227 exmid01 4228 exmidundif 4236 eusv2i 4487 reusv3 4492 iunpw 4512 suc11g 4590 ssxpbm 5102 ssxp1 5103 ssxp2 5104 xp11m 5105 2elresin 5366 mpteqb 5649 f1fveq 5816 f1elima 5817 f1imass 5818 fliftf 5843 nnsucuniel 6550 iserd 6615 ecopovtrn 6688 ecopover 6689 ecopovtrng 6691 ecopoverg 6692 map0g 6744 fopwdom 6894 f1finf1o 7008 mkvprop 7219 addcanpig 7396 mulcanpig 7397 srpospr 7845 readdcan 8161 cnegexlem1 8196 addcan 8201 addcan2 8202 neg11 8272 negreb 8286 add20 8495 cru 8623 mulcanapd 8682 uz11 9618 eqreznegel 9682 lbzbi 9684 xneg11 9903 xnn0xadd0 9936 xsubge0 9950 elioc2 10005 elico2 10006 elicc2 10007 fzopth 10130 2ffzeq 10210 flqidz 10358 addmodlteq 10472 frec2uzrand 10479 nninfinf 10517 expcan 10790 nn0opthd 10796 fz1eqb 10864 wrdnval 10947 eqwrd 10957 cj11 11052 sqrt0 11151 recan 11256 0dvds 11957 dvds1 11998 alzdvds 11999 nn0enne 12046 nn0oddm1d2 12053 nnoddm1d2 12054 divalgmod 12071 gcdeq0 12117 algcvgblem 12190 prmexpb 12292 4sqexercise2 12540 4sqlemsdc 12541 4sqlem11 12542 ennnfonelemim 12584 grprcan 13112 grplcan 13137 grpinv11 13144 isnzr2 13683 znidomb 14157 tgdom 14251 en1top 14256 hmeocnvb 14497 metrest 14685 lgsne0 15195 2lgs 15261 2lgsoddprmlem3 15268 bj-nnbist 15306 bj-nnbidc 15319 bj-peano4 15517 bj-nn0sucALT 15540 |
Copyright terms: Public domain | W3C validator |