Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbid1 | GIF version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
Ref | Expression |
---|---|
impbid1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
impbid1.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
impbid1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | impbid1.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | impbid 128 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: impbid2 142 iba 298 ibar 299 pm4.81dc 894 pm5.63dc 931 pm4.83dc 936 pm5.71dc 946 19.33b2 1609 19.9t 1622 sb4b 1814 a16gb 1845 euor2 2064 eupickbi 2088 ceqsalg 2740 eqvincg 2836 ddifstab 3239 csbprc 3439 undif4 3456 eqifdc 3539 sssnm 3717 sneqbg 3726 opthpr 3735 elpwuni 3938 ss1o0el1 4158 exmid01 4159 exmidundif 4167 eusv2i 4414 reusv3 4419 iunpw 4439 suc11g 4515 ssxpbm 5020 ssxp1 5021 ssxp2 5022 xp11m 5023 2elresin 5280 mpteqb 5557 f1fveq 5719 f1elima 5720 f1imass 5721 fliftf 5746 nnsucuniel 6439 iserd 6503 ecopovtrn 6574 ecopover 6575 ecopovtrng 6577 ecopoverg 6578 map0g 6630 fopwdom 6778 f1finf1o 6888 mkvprop 7095 addcanpig 7248 mulcanpig 7249 srpospr 7697 readdcan 8009 cnegexlem1 8044 addcan 8049 addcan2 8050 neg11 8120 negreb 8134 add20 8343 cru 8471 mulcanapd 8529 uz11 9455 eqreznegel 9516 lbzbi 9518 xneg11 9731 xnn0xadd0 9764 xsubge0 9778 elioc2 9833 elico2 9834 elicc2 9835 fzopth 9956 2ffzeq 10033 flqidz 10178 addmodlteq 10290 frec2uzrand 10297 expcan 10583 nn0opthd 10589 fz1eqb 10658 cj11 10798 sqrt0 10897 recan 11002 0dvds 11699 dvds1 11737 alzdvds 11738 nn0enne 11785 nn0oddm1d2 11792 nnoddm1d2 11793 divalgmod 11810 gcdeq0 11852 algcvgblem 11917 prmexpb 12016 ennnfonelemim 12136 tgdom 12443 en1top 12448 hmeocnvb 12689 metrest 12877 bj-nnbist 13289 bj-nnbidc 13300 bj-peano4 13501 bj-nn0sucALT 13524 |
Copyright terms: Public domain | W3C validator |