| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid1 | GIF version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
| Ref | Expression |
|---|---|
| impbid1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| impbid1.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| impbid1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | impbid1.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 iba 300 ibar 301 pm4.81dc 910 pm5.63dc 949 pm4.83dc 954 pm5.71dc 964 19.33b2 1653 19.9t 1666 sb4b 1858 a16gb 1889 euor2 2114 eupickbi 2138 ceqsalg 2805 eqvincg 2904 ddifstab 3313 csbprc 3514 undif4 3531 eqifdc 3616 ifnebibdc 3625 ssprsseq 3806 sssnm 3808 sneqbg 3817 opthpr 3826 elpwuni 4031 ss1o0el1 4257 exmid01 4258 exmidundif 4266 eusv2i 4520 reusv3 4525 iunpw 4545 suc11g 4623 ssxpbm 5137 ssxp1 5138 ssxp2 5139 xp11m 5140 2elresin 5406 mpteqb 5693 f1fveq 5864 f1elima 5865 f1imass 5866 fliftf 5891 nnsucuniel 6604 iserd 6669 ecopovtrn 6742 ecopover 6743 ecopovtrng 6745 ecopoverg 6746 map0g 6798 fopwdom 6958 f1finf1o 7075 mkvprop 7286 addcanpig 7482 mulcanpig 7483 srpospr 7931 readdcan 8247 cnegexlem1 8282 addcan 8287 addcan2 8288 neg11 8358 negreb 8372 add20 8582 cru 8710 mulcanapd 8769 uz11 9706 eqreznegel 9770 lbzbi 9772 xneg11 9991 xnn0xadd0 10024 xsubge0 10038 elioc2 10093 elico2 10094 elicc2 10095 fzopth 10218 2ffzeq 10298 flqidz 10466 addmodlteq 10580 frec2uzrand 10587 nninfinf 10625 expcan 10898 nn0opthd 10904 fz1eqb 10972 wrdnval 11061 eqwrd 11071 wrdl1s1 11122 ccatopth 11207 ccatopth2 11208 cj11 11331 sqrt0 11430 recan 11535 0dvds 12237 dvds1 12279 alzdvds 12280 nn0enne 12328 nn0oddm1d2 12335 nnoddm1d2 12336 divalgmod 12353 gcdeq0 12413 algcvgblem 12486 prmexpb 12588 4sqexercise2 12837 4sqlemsdc 12838 4sqlem11 12839 ennnfonelemim 12910 grprcan 13484 grplcan 13509 grpinv11 13516 isnzr2 14061 znidomb 14535 tgdom 14659 en1top 14664 hmeocnvb 14905 metrest 15093 perfect 15588 lgsne0 15630 2lgs 15696 2lgsoddprmlem3 15703 wrdupgren 15807 wrdumgren 15817 bj-nnbist 15880 bj-nnbidc 15893 bj-peano4 16090 bj-nn0sucALT 16113 |
| Copyright terms: Public domain | W3C validator |