| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid1 | GIF version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
| Ref | Expression |
|---|---|
| impbid1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| impbid1.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| impbid1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | impbid1.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 iba 300 ibar 301 pm4.81dc 909 pm5.63dc 948 pm4.83dc 953 pm5.71dc 963 19.33b2 1643 19.9t 1656 sb4b 1848 a16gb 1879 euor2 2103 eupickbi 2127 ceqsalg 2791 eqvincg 2888 ddifstab 3296 csbprc 3497 undif4 3514 eqifdc 3597 ifnebibdc 3605 sssnm 3785 sneqbg 3794 opthpr 3803 elpwuni 4007 ss1o0el1 4231 exmid01 4232 exmidundif 4240 eusv2i 4491 reusv3 4496 iunpw 4516 suc11g 4594 ssxpbm 5106 ssxp1 5107 ssxp2 5108 xp11m 5109 2elresin 5372 mpteqb 5655 f1fveq 5822 f1elima 5823 f1imass 5824 fliftf 5849 nnsucuniel 6562 iserd 6627 ecopovtrn 6700 ecopover 6701 ecopovtrng 6703 ecopoverg 6704 map0g 6756 fopwdom 6906 f1finf1o 7022 mkvprop 7233 addcanpig 7420 mulcanpig 7421 srpospr 7869 readdcan 8185 cnegexlem1 8220 addcan 8225 addcan2 8226 neg11 8296 negreb 8310 add20 8520 cru 8648 mulcanapd 8707 uz11 9643 eqreznegel 9707 lbzbi 9709 xneg11 9928 xnn0xadd0 9961 xsubge0 9975 elioc2 10030 elico2 10031 elicc2 10032 fzopth 10155 2ffzeq 10235 flqidz 10395 addmodlteq 10509 frec2uzrand 10516 nninfinf 10554 expcan 10827 nn0opthd 10833 fz1eqb 10901 wrdnval 10984 eqwrd 10994 cj11 11089 sqrt0 11188 recan 11293 0dvds 11995 dvds1 12037 alzdvds 12038 nn0enne 12086 nn0oddm1d2 12093 nnoddm1d2 12094 divalgmod 12111 gcdeq0 12171 algcvgblem 12244 prmexpb 12346 4sqexercise2 12595 4sqlemsdc 12596 4sqlem11 12597 ennnfonelemim 12668 grprcan 13241 grplcan 13266 grpinv11 13273 isnzr2 13818 znidomb 14292 tgdom 14416 en1top 14421 hmeocnvb 14662 metrest 14850 perfect 15345 lgsne0 15387 2lgs 15453 2lgsoddprmlem3 15460 bj-nnbist 15498 bj-nnbidc 15511 bj-peano4 15709 bj-nn0sucALT 15732 |
| Copyright terms: Public domain | W3C validator |