| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid1 | GIF version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
| Ref | Expression |
|---|---|
| impbid1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| impbid1.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| impbid1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | impbid1.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 iba 300 ibar 301 pm4.81dc 909 pm5.63dc 948 pm4.83dc 953 pm5.71dc 963 19.33b2 1643 19.9t 1656 sb4b 1848 a16gb 1879 euor2 2103 eupickbi 2127 ceqsalg 2791 eqvincg 2888 ddifstab 3296 csbprc 3497 undif4 3514 eqifdc 3597 ifnebibdc 3605 sssnm 3785 sneqbg 3794 opthpr 3803 elpwuni 4007 ss1o0el1 4231 exmid01 4232 exmidundif 4240 eusv2i 4491 reusv3 4496 iunpw 4516 suc11g 4594 ssxpbm 5106 ssxp1 5107 ssxp2 5108 xp11m 5109 2elresin 5372 mpteqb 5655 f1fveq 5822 f1elima 5823 f1imass 5824 fliftf 5849 nnsucuniel 6562 iserd 6627 ecopovtrn 6700 ecopover 6701 ecopovtrng 6703 ecopoverg 6704 map0g 6756 fopwdom 6906 f1finf1o 7022 mkvprop 7233 addcanpig 7418 mulcanpig 7419 srpospr 7867 readdcan 8183 cnegexlem1 8218 addcan 8223 addcan2 8224 neg11 8294 negreb 8308 add20 8518 cru 8646 mulcanapd 8705 uz11 9641 eqreznegel 9705 lbzbi 9707 xneg11 9926 xnn0xadd0 9959 xsubge0 9973 elioc2 10028 elico2 10029 elicc2 10030 fzopth 10153 2ffzeq 10233 flqidz 10393 addmodlteq 10507 frec2uzrand 10514 nninfinf 10552 expcan 10825 nn0opthd 10831 fz1eqb 10899 wrdnval 10982 eqwrd 10992 cj11 11087 sqrt0 11186 recan 11291 0dvds 11993 dvds1 12035 alzdvds 12036 nn0enne 12084 nn0oddm1d2 12091 nnoddm1d2 12092 divalgmod 12109 gcdeq0 12169 algcvgblem 12242 prmexpb 12344 4sqexercise2 12593 4sqlemsdc 12594 4sqlem11 12595 ennnfonelemim 12666 grprcan 13239 grplcan 13264 grpinv11 13271 isnzr2 13816 znidomb 14290 tgdom 14392 en1top 14397 hmeocnvb 14638 metrest 14826 perfect 15321 lgsne0 15363 2lgs 15429 2lgsoddprmlem3 15436 bj-nnbist 15474 bj-nnbidc 15487 bj-peano4 15685 bj-nn0sucALT 15708 |
| Copyright terms: Public domain | W3C validator |