![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbid1 | GIF version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
Ref | Expression |
---|---|
impbid1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
impbid1.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
impbid1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | impbid1.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | impbid 128 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: impbid2 142 iba 296 ibar 297 pm4.81dc 876 pm5.63dc 913 pm4.83dc 918 pm5.71dc 928 19.33b2 1591 19.9t 1604 sb4b 1788 a16gb 1819 euor2 2033 eupickbi 2057 ceqsalg 2685 eqvincg 2779 ddifstab 3174 csbprc 3374 undif4 3391 eqifdc 3472 sssnm 3647 sneqbg 3656 opthpr 3665 elpwuni 3868 exmid01 4081 exmidundif 4089 eusv2i 4336 reusv3 4341 iunpw 4361 suc11g 4432 ssxpbm 4932 ssxp1 4933 ssxp2 4934 xp11m 4935 2elresin 5192 mpteqb 5465 f1fveq 5627 f1elima 5628 f1imass 5629 fliftf 5654 nnsucuniel 6345 iserd 6409 ecopovtrn 6480 ecopover 6481 ecopovtrng 6483 ecopoverg 6484 map0g 6536 fopwdom 6683 f1finf1o 6787 mkvprop 6982 addcanpig 7090 mulcanpig 7091 srpospr 7525 readdcan 7825 cnegexlem1 7860 addcan 7865 addcan2 7866 neg11 7936 negreb 7950 add20 8155 cru 8282 mulcanapd 8335 uz11 9250 eqreznegel 9308 lbzbi 9310 xneg11 9510 xnn0xadd0 9543 xsubge0 9557 elioc2 9612 elico2 9613 elicc2 9614 fzopth 9734 2ffzeq 9811 flqidz 9952 addmodlteq 10064 frec2uzrand 10071 expcan 10356 nn0opthd 10361 fz1eqb 10430 cj11 10570 sqrt0 10668 recan 10773 0dvds 11361 dvds1 11399 alzdvds 11400 nn0enne 11447 nn0oddm1d2 11454 nnoddm1d2 11455 divalgmod 11472 gcdeq0 11513 algcvgblem 11576 prmexpb 11675 ennnfonelemim 11782 tgdom 12084 en1top 12089 metrest 12495 bj-nnbist 12646 bj-nnbidc 12655 bj-peano4 12845 bj-nn0sucALT 12868 |
Copyright terms: Public domain | W3C validator |