![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbid1 | GIF version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
Ref | Expression |
---|---|
impbid1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
impbid1.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
impbid1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | impbid1.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: impbid2 143 iba 300 ibar 301 pm4.81dc 909 pm5.63dc 948 pm4.83dc 953 pm5.71dc 963 19.33b2 1640 19.9t 1653 sb4b 1845 a16gb 1876 euor2 2100 eupickbi 2124 ceqsalg 2788 eqvincg 2884 ddifstab 3291 csbprc 3492 undif4 3509 eqifdc 3592 ifnebibdc 3600 sssnm 3780 sneqbg 3789 opthpr 3798 elpwuni 4002 ss1o0el1 4226 exmid01 4227 exmidundif 4235 eusv2i 4486 reusv3 4491 iunpw 4511 suc11g 4589 ssxpbm 5101 ssxp1 5102 ssxp2 5103 xp11m 5104 2elresin 5365 mpteqb 5648 f1fveq 5815 f1elima 5816 f1imass 5817 fliftf 5842 nnsucuniel 6548 iserd 6613 ecopovtrn 6686 ecopover 6687 ecopovtrng 6689 ecopoverg 6690 map0g 6742 fopwdom 6892 f1finf1o 7006 mkvprop 7217 addcanpig 7394 mulcanpig 7395 srpospr 7843 readdcan 8159 cnegexlem1 8194 addcan 8199 addcan2 8200 neg11 8270 negreb 8284 add20 8493 cru 8621 mulcanapd 8680 uz11 9615 eqreznegel 9679 lbzbi 9681 xneg11 9900 xnn0xadd0 9933 xsubge0 9947 elioc2 10002 elico2 10003 elicc2 10004 fzopth 10127 2ffzeq 10207 flqidz 10355 addmodlteq 10469 frec2uzrand 10476 nninfinf 10514 expcan 10787 nn0opthd 10793 fz1eqb 10861 wrdnval 10944 eqwrd 10954 cj11 11049 sqrt0 11148 recan 11253 0dvds 11954 dvds1 11995 alzdvds 11996 nn0enne 12043 nn0oddm1d2 12050 nnoddm1d2 12051 divalgmod 12068 gcdeq0 12114 algcvgblem 12187 prmexpb 12289 4sqexercise2 12537 4sqlemsdc 12538 4sqlem11 12539 ennnfonelemim 12581 grprcan 13109 grplcan 13134 grpinv11 13141 isnzr2 13680 znidomb 14146 tgdom 14240 en1top 14245 hmeocnvb 14486 metrest 14674 lgsne0 15154 2lgsoddprmlem3 15199 bj-nnbist 15236 bj-nnbidc 15249 bj-peano4 15447 bj-nn0sucALT 15470 |
Copyright terms: Public domain | W3C validator |