Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impbid1 | GIF version |
Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
Ref | Expression |
---|---|
impbid1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
impbid1.2 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
impbid1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | impbid1.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
4 | 1, 3 | impbid 128 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: impbid2 142 iba 298 ibar 299 pm4.81dc 898 pm5.63dc 936 pm4.83dc 941 pm5.71dc 951 19.33b2 1617 19.9t 1630 sb4b 1822 a16gb 1853 euor2 2072 eupickbi 2096 ceqsalg 2754 eqvincg 2850 ddifstab 3254 csbprc 3454 undif4 3471 eqifdc 3554 sssnm 3734 sneqbg 3743 opthpr 3752 elpwuni 3955 ss1o0el1 4176 exmid01 4177 exmidundif 4185 eusv2i 4433 reusv3 4438 iunpw 4458 suc11g 4534 ssxpbm 5039 ssxp1 5040 ssxp2 5041 xp11m 5042 2elresin 5299 mpteqb 5576 f1fveq 5740 f1elima 5741 f1imass 5742 fliftf 5767 nnsucuniel 6463 iserd 6527 ecopovtrn 6598 ecopover 6599 ecopovtrng 6601 ecopoverg 6602 map0g 6654 fopwdom 6802 f1finf1o 6912 mkvprop 7122 addcanpig 7275 mulcanpig 7276 srpospr 7724 readdcan 8038 cnegexlem1 8073 addcan 8078 addcan2 8079 neg11 8149 negreb 8163 add20 8372 cru 8500 mulcanapd 8558 uz11 9488 eqreznegel 9552 lbzbi 9554 xneg11 9770 xnn0xadd0 9803 xsubge0 9817 elioc2 9872 elico2 9873 elicc2 9874 fzopth 9996 2ffzeq 10076 flqidz 10221 addmodlteq 10333 frec2uzrand 10340 expcan 10629 nn0opthd 10635 fz1eqb 10704 cj11 10847 sqrt0 10946 recan 11051 0dvds 11751 dvds1 11791 alzdvds 11792 nn0enne 11839 nn0oddm1d2 11846 nnoddm1d2 11847 divalgmod 11864 gcdeq0 11910 algcvgblem 11981 prmexpb 12083 ennnfonelemim 12357 tgdom 12712 en1top 12717 hmeocnvb 12958 metrest 13146 lgsne0 13579 bj-nnbist 13625 bj-nnbidc 13638 bj-peano4 13837 bj-nn0sucALT 13860 |
Copyright terms: Public domain | W3C validator |