| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid1 | GIF version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
| Ref | Expression |
|---|---|
| impbid1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| impbid1.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| impbid1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | impbid1.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 iba 300 ibar 301 pm4.81dc 909 pm5.63dc 948 pm4.83dc 953 pm5.71dc 963 19.33b2 1651 19.9t 1664 sb4b 1856 a16gb 1887 euor2 2111 eupickbi 2135 ceqsalg 2799 eqvincg 2896 ddifstab 3304 csbprc 3505 undif4 3522 eqifdc 3606 ifnebibdc 3614 sssnm 3794 sneqbg 3803 opthpr 3812 elpwuni 4016 ss1o0el1 4240 exmid01 4241 exmidundif 4249 eusv2i 4501 reusv3 4506 iunpw 4526 suc11g 4604 ssxpbm 5117 ssxp1 5118 ssxp2 5119 xp11m 5120 2elresin 5386 mpteqb 5669 f1fveq 5840 f1elima 5841 f1imass 5842 fliftf 5867 nnsucuniel 6580 iserd 6645 ecopovtrn 6718 ecopover 6719 ecopovtrng 6721 ecopoverg 6722 map0g 6774 fopwdom 6932 f1finf1o 7048 mkvprop 7259 addcanpig 7446 mulcanpig 7447 srpospr 7895 readdcan 8211 cnegexlem1 8246 addcan 8251 addcan2 8252 neg11 8322 negreb 8336 add20 8546 cru 8674 mulcanapd 8733 uz11 9670 eqreznegel 9734 lbzbi 9736 xneg11 9955 xnn0xadd0 9988 xsubge0 10002 elioc2 10057 elico2 10058 elicc2 10059 fzopth 10182 2ffzeq 10262 flqidz 10427 addmodlteq 10541 frec2uzrand 10548 nninfinf 10586 expcan 10859 nn0opthd 10865 fz1eqb 10933 wrdnval 11022 eqwrd 11032 wrdl1s1 11082 cj11 11187 sqrt0 11286 recan 11391 0dvds 12093 dvds1 12135 alzdvds 12136 nn0enne 12184 nn0oddm1d2 12191 nnoddm1d2 12192 divalgmod 12209 gcdeq0 12269 algcvgblem 12342 prmexpb 12444 4sqexercise2 12693 4sqlemsdc 12694 4sqlem11 12695 ennnfonelemim 12766 grprcan 13340 grplcan 13365 grpinv11 13372 isnzr2 13917 znidomb 14391 tgdom 14515 en1top 14520 hmeocnvb 14761 metrest 14949 perfect 15444 lgsne0 15486 2lgs 15552 2lgsoddprmlem3 15559 bj-nnbist 15642 bj-nnbidc 15655 bj-peano4 15853 bj-nn0sucALT 15876 |
| Copyright terms: Public domain | W3C validator |