| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid1 | GIF version | ||
| Description: Infer an equivalence from two implications. (Contributed by NM, 6-Mar-2007.) |
| Ref | Expression |
|---|---|
| impbid1.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| impbid1.2 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| impbid1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid1.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | impbid1.2 | . . 3 ⊢ (𝜒 → 𝜓) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜒 → 𝜓)) |
| 4 | 1, 3 | impbid 129 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: impbid2 143 iba 300 ibar 301 pm4.81dc 909 pm5.63dc 948 pm4.83dc 953 pm5.71dc 963 19.33b2 1643 19.9t 1656 sb4b 1848 a16gb 1879 euor2 2103 eupickbi 2127 ceqsalg 2791 eqvincg 2888 ddifstab 3296 csbprc 3497 undif4 3514 eqifdc 3597 ifnebibdc 3605 sssnm 3785 sneqbg 3794 opthpr 3803 elpwuni 4007 ss1o0el1 4231 exmid01 4232 exmidundif 4240 eusv2i 4491 reusv3 4496 iunpw 4516 suc11g 4594 ssxpbm 5106 ssxp1 5107 ssxp2 5108 xp11m 5109 2elresin 5370 mpteqb 5653 f1fveq 5820 f1elima 5821 f1imass 5822 fliftf 5847 nnsucuniel 6554 iserd 6619 ecopovtrn 6692 ecopover 6693 ecopovtrng 6695 ecopoverg 6696 map0g 6748 fopwdom 6898 f1finf1o 7014 mkvprop 7225 addcanpig 7403 mulcanpig 7404 srpospr 7852 readdcan 8168 cnegexlem1 8203 addcan 8208 addcan2 8209 neg11 8279 negreb 8293 add20 8503 cru 8631 mulcanapd 8690 uz11 9626 eqreznegel 9690 lbzbi 9692 xneg11 9911 xnn0xadd0 9944 xsubge0 9958 elioc2 10013 elico2 10014 elicc2 10015 fzopth 10138 2ffzeq 10218 flqidz 10378 addmodlteq 10492 frec2uzrand 10499 nninfinf 10537 expcan 10810 nn0opthd 10816 fz1eqb 10884 wrdnval 10967 eqwrd 10977 cj11 11072 sqrt0 11171 recan 11276 0dvds 11978 dvds1 12020 alzdvds 12021 nn0enne 12069 nn0oddm1d2 12076 nnoddm1d2 12077 divalgmod 12094 gcdeq0 12154 algcvgblem 12227 prmexpb 12329 4sqexercise2 12578 4sqlemsdc 12579 4sqlem11 12580 ennnfonelemim 12651 grprcan 13179 grplcan 13204 grpinv11 13211 isnzr2 13750 znidomb 14224 tgdom 14318 en1top 14323 hmeocnvb 14564 metrest 14752 perfect 15247 lgsne0 15289 2lgs 15355 2lgsoddprmlem3 15362 bj-nnbist 15400 bj-nnbidc 15413 bj-peano4 15611 bj-nn0sucALT 15634 |
| Copyright terms: Public domain | W3C validator |