![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.21d | GIF version |
Description: A contradiction implies anything. Deduction from pm2.21 617. (Contributed by NM, 10-Feb-1996.) |
Ref | Expression |
---|---|
pm2.21d.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.21d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21d.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | pm2.21 617 | . 2 ⊢ (¬ 𝜓 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 615 |
This theorem is referenced by: pm2.21dd 620 pm5.21 695 2falsed 702 mtord 783 prlem1 973 eq0rdv 3467 csbprc 3468 rzal 3520 poirr2 5021 nnsucuniel 6495 nnawordex 6529 swoord2 6564 difinfsnlem 7097 exmidomni 7139 elni2 7312 cauappcvgprlemdisj 7649 caucvgprlemdisj 7672 caucvgprprlemdisj 7700 caucvgsr 7800 lelttr 8045 nnsub 8957 nn0ge2m1nn 9235 elnnz 9262 elnn0z 9265 indstr 9592 indstr2 9608 xrltnsym 9792 xrlttr 9794 xrltso 9795 xrlelttr 9805 xltnegi 9834 xsubge0 9880 ixxdisj 9902 icodisj 9991 fzm1 10099 qbtwnxr 10257 frec2uzlt2d 10403 nn0ltexp2 10688 facdiv 10717 resqrexlemgt0 11028 climuni 11300 fsumcl2lem 11405 dvdsle 11849 prmdvdsexpr 12149 prmfac1 12151 sqrt2irr 12161 phibndlem 12215 dvdsprmpweqle 12335 isxmet2d 13818 lgsdir2lem2 14400 lgseisenlem2 14421 trilpolemres 14760 |
Copyright terms: Public domain | W3C validator |