| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21d | GIF version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by NM, 10-Feb-1996.) |
| Ref | Expression |
|---|---|
| pm2.21d.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.21d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21d.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | pm2.21 618 | . 2 ⊢ (¬ 𝜓 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.21dd 621 pm5.21 697 2falsed 704 mtord 785 prlem1 976 eq0rdv 3506 csbprc 3507 rzal 3559 poirr2 5080 nnsucuniel 6588 nnawordex 6622 swoord2 6657 difinfsnlem 7208 exmidomni 7251 elni2 7434 cauappcvgprlemdisj 7771 caucvgprlemdisj 7794 caucvgprprlemdisj 7822 caucvgsr 7922 lelttr 8168 nnsub 9082 nn0ge2m1nn 9362 elnnz 9389 elnn0z 9392 indstr 9721 indstr2 9737 xrltnsym 9922 xrlttr 9924 xrltso 9925 xrlelttr 9935 xltnegi 9964 xsubge0 10010 ixxdisj 10032 icodisj 10121 fzm1 10229 qbtwnxr 10407 frec2uzlt2d 10556 nn0ltexp2 10861 facdiv 10890 resqrexlemgt0 11375 climuni 11648 fsumcl2lem 11753 dvdsle 12199 prmdvdsexpr 12516 prmfac1 12518 sqrt2irr 12528 phibndlem 12582 dvdsprmpweqle 12704 isxmet2d 14864 lgsdir2lem2 15550 lgseisenlem2 15592 trilpolemres 16055 |
| Copyright terms: Public domain | W3C validator |