| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21d | GIF version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 620. (Contributed by NM, 10-Feb-1996.) |
| Ref | Expression |
|---|---|
| pm2.21d.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.21d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21d.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | pm2.21 620 | . 2 ⊢ (¬ 𝜓 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 618 |
| This theorem is referenced by: pm2.21dd 623 pm5.21 699 2falsed 706 mtord 787 prlem1 978 eq0rdv 3516 csbprc 3517 rzal 3569 poirr2 5097 nnsucuniel 6611 nnawordex 6645 swoord2 6680 difinfsnlem 7234 exmidomni 7277 elni2 7469 cauappcvgprlemdisj 7806 caucvgprlemdisj 7829 caucvgprprlemdisj 7857 caucvgsr 7957 lelttr 8203 nnsub 9117 nn0ge2m1nn 9397 elnnz 9424 elnn0z 9427 indstr 9756 indstr2 9772 xrltnsym 9957 xrlttr 9959 xrltso 9960 xrlelttr 9970 xltnegi 9999 xsubge0 10045 ixxdisj 10067 icodisj 10156 fzm1 10264 qbtwnxr 10444 frec2uzlt2d 10593 nn0ltexp2 10898 facdiv 10927 resqrexlemgt0 11497 climuni 11770 fsumcl2lem 11875 dvdsle 12321 prmdvdsexpr 12638 prmfac1 12640 sqrt2irr 12650 phibndlem 12704 dvdsprmpweqle 12826 isxmet2d 14987 lgsdir2lem2 15673 lgseisenlem2 15715 trilpolemres 16321 |
| Copyright terms: Public domain | W3C validator |