![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.21d | GIF version |
Description: A contradiction implies anything. Deduction from pm2.21 617. (Contributed by NM, 10-Feb-1996.) |
Ref | Expression |
---|---|
pm2.21d.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.21d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21d.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | pm2.21 617 | . 2 ⊢ (¬ 𝜓 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 615 |
This theorem is referenced by: pm2.21dd 620 pm5.21 695 2falsed 702 mtord 783 prlem1 973 eq0rdv 3468 csbprc 3469 rzal 3521 poirr2 5022 nnsucuniel 6496 nnawordex 6530 swoord2 6565 difinfsnlem 7098 exmidomni 7140 elni2 7313 cauappcvgprlemdisj 7650 caucvgprlemdisj 7673 caucvgprprlemdisj 7701 caucvgsr 7801 lelttr 8046 nnsub 8958 nn0ge2m1nn 9236 elnnz 9263 elnn0z 9266 indstr 9593 indstr2 9609 xrltnsym 9793 xrlttr 9795 xrltso 9796 xrlelttr 9806 xltnegi 9835 xsubge0 9881 ixxdisj 9903 icodisj 9992 fzm1 10100 qbtwnxr 10258 frec2uzlt2d 10404 nn0ltexp2 10689 facdiv 10718 resqrexlemgt0 11029 climuni 11301 fsumcl2lem 11406 dvdsle 11850 prmdvdsexpr 12150 prmfac1 12152 sqrt2irr 12162 phibndlem 12216 dvdsprmpweqle 12336 isxmet2d 13851 lgsdir2lem2 14433 lgseisenlem2 14454 trilpolemres 14793 |
Copyright terms: Public domain | W3C validator |