![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.21d | GIF version |
Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by NM, 10-Feb-1996.) |
Ref | Expression |
---|---|
pm2.21d.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.21d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21d.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | pm2.21 618 | . 2 ⊢ (¬ 𝜓 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
This theorem is referenced by: pm2.21dd 621 pm5.21 696 2falsed 703 mtord 784 prlem1 975 eq0rdv 3492 csbprc 3493 rzal 3545 poirr2 5059 nnsucuniel 6550 nnawordex 6584 swoord2 6619 difinfsnlem 7160 exmidomni 7203 elni2 7376 cauappcvgprlemdisj 7713 caucvgprlemdisj 7736 caucvgprprlemdisj 7764 caucvgsr 7864 lelttr 8110 nnsub 9023 nn0ge2m1nn 9303 elnnz 9330 elnn0z 9333 indstr 9661 indstr2 9677 xrltnsym 9862 xrlttr 9864 xrltso 9865 xrlelttr 9875 xltnegi 9904 xsubge0 9950 ixxdisj 9972 icodisj 10061 fzm1 10169 qbtwnxr 10329 frec2uzlt2d 10478 nn0ltexp2 10783 facdiv 10812 resqrexlemgt0 11167 climuni 11439 fsumcl2lem 11544 dvdsle 11989 prmdvdsexpr 12291 prmfac1 12293 sqrt2irr 12303 phibndlem 12357 dvdsprmpweqle 12478 isxmet2d 14527 lgsdir2lem2 15186 lgseisenlem2 15228 trilpolemres 15602 |
Copyright terms: Public domain | W3C validator |