Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.21d | GIF version |
Description: A contradiction implies anything. Deduction from pm2.21 607. (Contributed by NM, 10-Feb-1996.) |
Ref | Expression |
---|---|
pm2.21d.1 | ⊢ (𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
pm2.21d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21d.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
2 | pm2.21 607 | . 2 ⊢ (¬ 𝜓 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 605 |
This theorem is referenced by: pm2.21dd 610 pm5.21 685 2falsed 692 mtord 773 prlem1 963 eq0rdv 3452 csbprc 3453 rzal 3505 poirr2 4995 nnsucuniel 6459 nnawordex 6492 swoord2 6527 difinfsnlem 7060 exmidomni 7102 elni2 7251 cauappcvgprlemdisj 7588 caucvgprlemdisj 7611 caucvgprprlemdisj 7639 caucvgsr 7739 lelttr 7983 nnsub 8892 nn0ge2m1nn 9170 elnnz 9197 elnn0z 9200 indstr 9527 indstr2 9543 xrltnsym 9725 xrlttr 9727 xrltso 9728 xrlelttr 9738 xltnegi 9767 xsubge0 9813 ixxdisj 9835 icodisj 9924 fzm1 10031 qbtwnxr 10189 frec2uzlt2d 10335 nn0ltexp2 10619 facdiv 10647 resqrexlemgt0 10958 climuni 11230 fsumcl2lem 11335 dvdsle 11778 prmdvdsexpr 12078 prmfac1 12080 sqrt2irr 12090 phibndlem 12144 dvdsprmpweqle 12264 isxmet2d 12948 lgsdir2lem2 13530 trilpolemres 13881 |
Copyright terms: Public domain | W3C validator |