| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21d | GIF version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by NM, 10-Feb-1996.) |
| Ref | Expression |
|---|---|
| pm2.21d.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.21d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21d.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | pm2.21 618 | . 2 ⊢ (¬ 𝜓 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.21dd 621 pm5.21 696 2falsed 703 mtord 784 prlem1 975 eq0rdv 3496 csbprc 3497 rzal 3549 poirr2 5063 nnsucuniel 6562 nnawordex 6596 swoord2 6631 difinfsnlem 7174 exmidomni 7217 elni2 7398 cauappcvgprlemdisj 7735 caucvgprlemdisj 7758 caucvgprprlemdisj 7786 caucvgsr 7886 lelttr 8132 nnsub 9046 nn0ge2m1nn 9326 elnnz 9353 elnn0z 9356 indstr 9684 indstr2 9700 xrltnsym 9885 xrlttr 9887 xrltso 9888 xrlelttr 9898 xltnegi 9927 xsubge0 9973 ixxdisj 9995 icodisj 10084 fzm1 10192 qbtwnxr 10364 frec2uzlt2d 10513 nn0ltexp2 10818 facdiv 10847 resqrexlemgt0 11202 climuni 11475 fsumcl2lem 11580 dvdsle 12026 prmdvdsexpr 12343 prmfac1 12345 sqrt2irr 12355 phibndlem 12409 dvdsprmpweqle 12531 isxmet2d 14668 lgsdir2lem2 15354 lgseisenlem2 15396 trilpolemres 15773 |
| Copyright terms: Public domain | W3C validator |