| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21d | GIF version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 620. (Contributed by NM, 10-Feb-1996.) |
| Ref | Expression |
|---|---|
| pm2.21d.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.21d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21d.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | pm2.21 620 | . 2 ⊢ (¬ 𝜓 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 618 |
| This theorem is referenced by: pm2.21dd 623 pm5.21 700 2falsed 707 mtord 788 prlem1 979 eq0rdv 3536 csbprc 3537 rzal 3589 poirr2 5121 nnsucuniel 6649 nnawordex 6683 swoord2 6718 difinfsnlem 7274 exmidomni 7317 elni2 7509 cauappcvgprlemdisj 7846 caucvgprlemdisj 7869 caucvgprprlemdisj 7897 caucvgsr 7997 lelttr 8243 nnsub 9157 nn0ge2m1nn 9437 elnnz 9464 elnn0z 9467 indstr 9796 indstr2 9812 xrltnsym 9997 xrlttr 9999 xrltso 10000 xrlelttr 10010 xltnegi 10039 xsubge0 10085 ixxdisj 10107 icodisj 10196 fzm1 10304 qbtwnxr 10485 frec2uzlt2d 10634 nn0ltexp2 10939 facdiv 10968 resqrexlemgt0 11539 climuni 11812 fsumcl2lem 11917 dvdsle 12363 prmdvdsexpr 12680 prmfac1 12682 sqrt2irr 12692 phibndlem 12746 dvdsprmpweqle 12868 isxmet2d 15030 lgsdir2lem2 15716 lgseisenlem2 15758 wlkv0 16090 trilpolemres 16440 |
| Copyright terms: Public domain | W3C validator |