| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.21d | GIF version | ||
| Description: A contradiction implies anything. Deduction from pm2.21 618. (Contributed by NM, 10-Feb-1996.) |
| Ref | Expression |
|---|---|
| pm2.21d.1 | ⊢ (𝜑 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| pm2.21d | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21d.1 | . 2 ⊢ (𝜑 → ¬ 𝜓) | |
| 2 | pm2.21 618 | . 2 ⊢ (¬ 𝜓 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-in2 616 |
| This theorem is referenced by: pm2.21dd 621 pm5.21 696 2falsed 703 mtord 784 prlem1 975 eq0rdv 3496 csbprc 3497 rzal 3549 poirr2 5063 nnsucuniel 6562 nnawordex 6596 swoord2 6631 difinfsnlem 7174 exmidomni 7217 elni2 7400 cauappcvgprlemdisj 7737 caucvgprlemdisj 7760 caucvgprprlemdisj 7788 caucvgsr 7888 lelttr 8134 nnsub 9048 nn0ge2m1nn 9328 elnnz 9355 elnn0z 9358 indstr 9686 indstr2 9702 xrltnsym 9887 xrlttr 9889 xrltso 9890 xrlelttr 9900 xltnegi 9929 xsubge0 9975 ixxdisj 9997 icodisj 10086 fzm1 10194 qbtwnxr 10366 frec2uzlt2d 10515 nn0ltexp2 10820 facdiv 10849 resqrexlemgt0 11204 climuni 11477 fsumcl2lem 11582 dvdsle 12028 prmdvdsexpr 12345 prmfac1 12347 sqrt2irr 12357 phibndlem 12411 dvdsprmpweqle 12533 isxmet2d 14670 lgsdir2lem2 15356 lgseisenlem2 15398 trilpolemres 15777 |
| Copyright terms: Public domain | W3C validator |