![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impbid | GIF version |
Description: Deduce an equivalence from two implications. (Contributed by NM, 5-Aug-1993.) (Revised by Wolf Lammen, 3-Nov-2012.) |
Ref | Expression |
---|---|
impbid.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
impbid.2 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
Ref | Expression |
---|---|
impbid | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbid.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | impbid.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
3 | 1, 2 | impbid21d 127 | . 2 ⊢ (𝜑 → (𝜑 → (𝜓 ↔ 𝜒))) |
4 | 3 | pm2.43i 49 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: bicom1 130 impbid1 141 pm5.74 178 imbi1d 230 pm5.501 243 pm5.32d 441 impbida 566 notbid 633 pm5.21 652 nbn2 654 2falsed 659 pm5.21ndd 662 orbi2d 745 con4biddc 798 con1bidc 812 con1bdc 816 oibabs 844 dedlema 921 dedlemb 922 xorbin 1330 albi 1412 19.21ht 1528 exbi 1551 19.23t 1623 equequ1 1656 equequ2 1657 elequ1 1658 elequ2 1659 equsexd 1675 dral1 1676 cbv2h 1692 sbequ12 1712 sbiedh 1728 drex1 1737 ax11b 1765 sbequ 1779 sbft 1787 sb56 1824 cbvexdh 1861 eupickb 2041 eupickbi 2042 ceqsalt 2667 ceqex 2766 mob2 2817 euxfr2dc 2822 reu6 2826 sbciegft 2891 csbiebt 2989 sseq1 3070 reupick 3307 reupick2 3309 disjeq2 3856 disjeq1 3859 exmidsssnc 4064 copsexg 4104 euotd 4114 poeq2 4160 sotritric 4184 sotritrieq 4185 seeq1 4199 seeq2 4200 alxfr 4320 ralxfrd 4321 rexxfrd 4322 ordelsuc 4359 sosng 4550 iss 4801 iotaval 5035 funeq 5079 funssres 5101 f0dom0 5252 tz6.12c 5383 fnbrfvb 5394 ssimaex 5414 fvimacnv 5467 elpreima 5471 fsn 5524 fconst2g 5567 elunirn 5599 f1ocnvfvb 5613 foeqcnvco 5623 f1eqcocnv 5624 fliftfun 5629 isose 5654 isopo 5656 isoso 5658 f1oiso2 5660 eusvobj2 5692 oprabid 5735 f1opw2 5908 op1steq 6007 rntpos 6084 frecabcl 6226 nnsucelsuc 6317 nnsucsssuc 6318 nnsseleq 6327 nnaord 6335 nnmord 6343 nnaordex 6353 nnawordex 6354 nnm00 6355 erexb 6384 swoord1 6388 swoord2 6389 iinerm 6431 fundmen 6630 mapxpen 6671 ssenen 6674 nneneq 6680 nndomo 6687 fidifsnen 6693 en1eqsnbi 6765 suplub2ti 6803 isoti 6809 ordiso2 6835 ordiso 6836 ctm 6909 ctssdc 6912 enomni 6923 pm54.43 6957 pr2ne 6959 ltexnqq 7117 genprndl 7230 genprndu 7231 nqprl 7260 nqpru 7261 1idprl 7299 1idpru 7300 ltexprlemrnd 7314 ltaprg 7328 recexprlemrnd 7338 cauappcvgprlemrnd 7359 caucvgprlemrnd 7382 caucvgprprlemrnd 7410 ltxrlt 7702 lttri3 7715 addlsub 7999 addid0 8002 ltadd2 8048 eqord1 8112 reapti 8207 apreap 8215 ltmul1 8220 apreim 8231 ltleap 8259 mulap0b 8277 apmul1 8409 lt2msq 8502 nnsub 8617 zltnle 8952 zleloe 8953 zrevaddcl 8956 zltp1le 8960 zapne 8977 nn0n0n1ge2b 8982 zdiv 8991 nneo 9006 zeo2 9009 qrevaddcl 9286 npnflt 9439 nmnfgt 9442 xltneg 9460 xleadd1 9499 iccid 9549 zltaddlt1le 9630 fzn 9663 0fz1 9666 uzsplit 9713 fzm1 9721 fzrevral 9726 ssfzo12bi 9843 qltnle 9864 ioo0 9878 ioom 9879 ico0 9880 ioc0 9881 flqge 9896 modqid2 9965 modqmuladd 9980 frec2uzlt2d 10018 shftlem 10429 shftuz 10430 caucvgrelemcau 10592 sqrtsq 10656 abs00ap 10674 cau3lem 10726 maxleb 10828 rexico 10833 negfi 10838 climshft 10912 zsumdc 10992 fsum3 10995 fsum00 11070 dvdsval2 11291 moddvds 11297 negdvdsb 11304 dvdsnegb 11305 dvdscmulr 11317 dvdsmulcr 11318 dvdssub2 11330 fzo0dvdseq 11350 ltoddhalfle 11385 dvdsgcdb 11494 gcdzeq 11503 dvdssqlem 11511 lcmeq0 11545 lcmdvdsb 11558 coprmgcdb 11562 ncoprmgcdne1b 11563 cncongr 11579 isprm2lem 11590 dvdsprime 11596 dvdsprm 11610 coprm 11615 euclemma 11617 rpexp 11624 hashgcdlem 11695 toponcomb 11977 tgss3 12029 isopn3 12076 neiint 12096 neipsm 12105 opnneissb 12106 opnssneib 12107 tpnei 12111 opnneiid 12115 restopnb 12132 tgcn 12158 tgcnp 12159 iscnp4 12168 cnpnei 12169 cnntr 12175 lmss 12196 upxp 12222 txcn 12225 txlm 12229 xblm 12345 blssexps 12357 blssex 12358 isxms2 12380 neibl 12419 metss 12422 metrest 12434 metcnp3 12435 bj-notbi 12704 triap 12808 |
Copyright terms: Public domain | W3C validator |