| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impbid | GIF version | ||
| Description: Deduce an equivalence from two implications. (Contributed by NM, 5-Aug-1993.) (Revised by Wolf Lammen, 3-Nov-2012.) |
| Ref | Expression |
|---|---|
| impbid.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| impbid.2 | ⊢ (𝜑 → (𝜒 → 𝜓)) |
| Ref | Expression |
|---|---|
| impbid | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impbid.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | impbid.2 | . . 3 ⊢ (𝜑 → (𝜒 → 𝜓)) | |
| 3 | 1, 2 | impbid21d 128 | . 2 ⊢ (𝜑 → (𝜑 → (𝜓 ↔ 𝜒))) |
| 4 | 3 | pm2.43i 49 | 1 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Copyright terms: Public domain | W3C validator |