Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm5.3 | GIF version |
Description: Theorem *5.3 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
pm5.3 | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp 261 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) | |
2 | imdistan 442 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitri 183 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |