| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.3 | GIF version | ||
| Description: Theorem *5.3 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
| Ref | Expression |
|---|---|
| pm5.3 | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp 263 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) | |
| 2 | imdistan 444 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitri 184 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |