ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.3 GIF version

Theorem pm5.3 467
Description: Theorem *5.3 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Assertion
Ref Expression
pm5.3 (((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem pm5.3
StepHypRef Expression
1 impexp 261 . 2 (((𝜑𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒)))
2 imdistan 441 . 2 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))
31, 2bitri 183 1 (((𝜑𝜓) → 𝜒) ↔ ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator