ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistan GIF version

Theorem imdistan 442
Description: Distribution of implication with conjunction. (Contributed by NM, 31-May-1999.) (Proof shortened by Wolf Lammen, 6-Dec-2012.)
Assertion
Ref Expression
imdistan ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem imdistan
StepHypRef Expression
1 pm5.42 318 . 2 ((𝜑 → (𝜓𝜒)) ↔ (𝜑 → (𝜓 → (𝜑𝜒))))
2 impexp 261 . 2 (((𝜑𝜓) → (𝜑𝜒)) ↔ (𝜑 → (𝜓 → (𝜑𝜒))))
31, 2bitr4i 186 1 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  imdistand  445  pm5.3  472  rmoim  2931  ss2rab  3223  bezoutlembi  11960
  Copyright terms: Public domain W3C validator