| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mpan10 | GIF version | ||
| Description: Modus ponens mixed with several conjunctions. (Contributed by Jim Kingdon, 7-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| mpan10 | ⊢ ((((𝜑 → 𝜓) ∧ 𝜒) ∧ 𝜑) → (𝜓 ∧ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ancom 266 | . . . 4 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
| 2 | 1 | anbi2i 457 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 ∧ 𝜑)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∧ 𝜒))) | 
| 3 | anass 401 | . . 3 ⊢ ((((𝜑 → 𝜓) ∧ 𝜒) ∧ 𝜑) ↔ ((𝜑 → 𝜓) ∧ (𝜒 ∧ 𝜑))) | |
| 4 | anass 401 | . . 3 ⊢ ((((𝜑 → 𝜓) ∧ 𝜑) ∧ 𝜒) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
| 5 | 2, 3, 4 | 3bitr4i 212 | . 2 ⊢ ((((𝜑 → 𝜓) ∧ 𝜒) ∧ 𝜑) ↔ (((𝜑 → 𝜓) ∧ 𝜑) ∧ 𝜒)) | 
| 6 | id 19 | . . . 4 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 7 | 6 | imp 124 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ 𝜑) → 𝜓) | 
| 8 | 7 | anim1i 340 | . 2 ⊢ ((((𝜑 → 𝜓) ∧ 𝜑) ∧ 𝜒) → (𝜓 ∧ 𝜒)) | 
| 9 | 5, 8 | sylbi 121 | 1 ⊢ ((((𝜑 → 𝜓) ∧ 𝜒) ∧ 𝜑) → (𝜓 ∧ 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |