Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpan10 GIF version

Theorem mpan10 466
 Description: Modus ponens mixed with several conjunctions. (Contributed by Jim Kingdon, 7-Jan-2018.)
Assertion
Ref Expression
mpan10 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜑) → (𝜓𝜒))

Proof of Theorem mpan10
StepHypRef Expression
1 ancom 264 . . . 4 ((𝜒𝜑) ↔ (𝜑𝜒))
21anbi2i 453 . . 3 (((𝜑𝜓) ∧ (𝜒𝜑)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
3 anass 399 . . 3 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜑) ↔ ((𝜑𝜓) ∧ (𝜒𝜑)))
4 anass 399 . . 3 ((((𝜑𝜓) ∧ 𝜑) ∧ 𝜒) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
52, 3, 43bitr4i 211 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜑) ↔ (((𝜑𝜓) ∧ 𝜑) ∧ 𝜒))
6 id 19 . . . 4 ((𝜑𝜓) → (𝜑𝜓))
76imp 123 . . 3 (((𝜑𝜓) ∧ 𝜑) → 𝜓)
87anim1i 338 . 2 ((((𝜑𝜓) ∧ 𝜑) ∧ 𝜒) → (𝜓𝜒))
95, 8sylbi 120 1 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜑) → (𝜓𝜒))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107 This theorem depends on definitions:  df-bi 116 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator