Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpan10 | GIF version |
Description: Modus ponens mixed with several conjunctions. (Contributed by Jim Kingdon, 7-Jan-2018.) |
Ref | Expression |
---|---|
mpan10 | ⊢ ((((𝜑 → 𝜓) ∧ 𝜒) ∧ 𝜑) → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 264 | . . . 4 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
2 | 1 | anbi2i 453 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 ∧ 𝜑)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∧ 𝜒))) |
3 | anass 399 | . . 3 ⊢ ((((𝜑 → 𝜓) ∧ 𝜒) ∧ 𝜑) ↔ ((𝜑 → 𝜓) ∧ (𝜒 ∧ 𝜑))) | |
4 | anass 399 | . . 3 ⊢ ((((𝜑 → 𝜓) ∧ 𝜑) ∧ 𝜒) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
5 | 2, 3, 4 | 3bitr4i 211 | . 2 ⊢ ((((𝜑 → 𝜓) ∧ 𝜒) ∧ 𝜑) ↔ (((𝜑 → 𝜓) ∧ 𝜑) ∧ 𝜒)) |
6 | id 19 | . . . 4 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
7 | 6 | imp 123 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ 𝜑) → 𝜓) |
8 | 7 | anim1i 338 | . 2 ⊢ ((((𝜑 → 𝜓) ∧ 𝜑) ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
9 | 5, 8 | sylbi 120 | 1 ⊢ ((((𝜑 → 𝜓) ∧ 𝜒) ∧ 𝜑) → (𝜓 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |