| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impexp | GIF version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 261 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | pm3.31 262 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imp4a 349 exp4a 366 imdistan 444 pm5.3 475 pm4.87 557 nan 693 pm4.14dc 891 pm5.6dc 927 2sb6 2003 2sb6rf 2009 2exsb 2028 mor 2087 eu2 2089 moanim 2119 r2alf 2514 r3al 2541 r19.23t 2604 ceqsralt 2790 rspc2gv 2880 ralrab 2925 ralrab2 2929 euind 2951 reu2 2952 reu3 2954 rmo4 2957 rmo3f 2961 reuind 2969 rmo2ilem 3079 rmo3 3081 ralss 3249 rabss 3260 raldifb 3303 unissb 3869 elintrab 3886 ssintrab 3897 dftr5 4134 repizf2lem 4194 reusv3 4495 tfi 4618 raliunxp 4807 fununi 5326 dff13 5815 dfsmo2 6345 tfr1onlemaccex 6406 tfrcllemaccex 6419 qliftfun 6676 nnnninfeq2 7195 prime 9425 raluz 9652 raluz2 9653 ralrp 9750 facwordi 10832 modfsummod 11623 nnwosdc 12206 isprm2 12285 isprm4 12287 metcnp 14748 limcdifap 14898 bdcriota 15529 |
| Copyright terms: Public domain | W3C validator |