Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impexp | GIF version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 259 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | pm3.31 260 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | impbii 125 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imp4a 347 exp4a 364 imdistan 441 pm5.3 467 pm4.87 547 nan 682 pm4.14dc 876 pm5.6dc 912 2sb6 1964 2sb6rf 1970 2exsb 1989 mor 2048 eu2 2050 moanim 2080 r2alf 2474 r3al 2501 r19.23t 2564 ceqsralt 2739 rspc2gv 2828 ralrab 2873 ralrab2 2877 euind 2899 reu2 2900 reu3 2902 rmo4 2905 rmo3f 2909 reuind 2917 rmo2ilem 3026 rmo3 3028 ralss 3194 rabss 3205 raldifb 3247 unissb 3802 elintrab 3819 ssintrab 3830 dftr5 4065 repizf2lem 4121 reusv3 4418 tfi 4539 raliunxp 4724 fununi 5235 dff13 5713 dfsmo2 6228 tfr1onlemaccex 6289 tfrcllemaccex 6302 qliftfun 6555 prime 9246 raluz 9472 raluz2 9473 ralrp 9564 facwordi 10596 modfsummod 11337 isprm2 11974 isprm4 11976 metcnp 12872 limcdifap 12991 bdcriota 13417 |
Copyright terms: Public domain | W3C validator |