| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impexp | GIF version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 261 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | pm3.31 262 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imp4a 349 exp4a 366 imdistan 444 pm5.3 475 pm4.87 557 nan 696 pm4.14dc 895 pm5.6dc 931 2sb6 2035 2sb6rf 2041 2exsb 2060 mor 2120 eu2 2122 moanim 2152 r2alf 2547 r3al 2574 r19.23t 2638 ceqsralt 2827 rspc2gv 2919 ralrab 2964 ralrab2 2968 euind 2990 reu2 2991 reu3 2993 rmo4 2996 rmo3f 3000 reuind 3008 rmo2ilem 3119 rmo3 3121 ralss 3290 rabss 3301 raldifb 3344 unissb 3917 elintrab 3934 ssintrab 3945 dftr5 4184 repizf2lem 4244 reusv3 4548 tfi 4671 raliunxp 4860 fununi 5385 dff13 5885 dfsmo2 6423 tfr1onlemaccex 6484 tfrcllemaccex 6497 qliftfun 6754 nnnninfeq2 7284 prime 9534 raluz 9761 raluz2 9762 ralrp 9859 facwordi 10949 modfsummod 11955 nnwosdc 12546 isprm2 12625 isprm4 12627 metcnp 15171 limcdifap 15321 bdcriota 16176 nnnninfex 16319 |
| Copyright terms: Public domain | W3C validator |