| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impexp | GIF version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 261 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | pm3.31 262 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imp4a 349 exp4a 366 imdistan 444 pm5.3 475 pm4.87 557 nan 693 pm4.14dc 891 pm5.6dc 927 2sb6 2003 2sb6rf 2009 2exsb 2028 mor 2087 eu2 2089 moanim 2119 r2alf 2514 r3al 2541 r19.23t 2604 ceqsralt 2790 rspc2gv 2880 ralrab 2925 ralrab2 2929 euind 2951 reu2 2952 reu3 2954 rmo4 2957 rmo3f 2961 reuind 2969 rmo2ilem 3079 rmo3 3081 ralss 3250 rabss 3261 raldifb 3304 unissb 3870 elintrab 3887 ssintrab 3898 dftr5 4135 repizf2lem 4195 reusv3 4496 tfi 4619 raliunxp 4808 fununi 5327 dff13 5818 dfsmo2 6354 tfr1onlemaccex 6415 tfrcllemaccex 6428 qliftfun 6685 nnnninfeq2 7204 prime 9442 raluz 9669 raluz2 9670 ralrp 9767 facwordi 10849 modfsummod 11640 nnwosdc 12231 isprm2 12310 isprm4 12312 metcnp 14832 limcdifap 14982 bdcriota 15613 |
| Copyright terms: Public domain | W3C validator |