| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impexp | GIF version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 261 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | pm3.31 262 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imp4a 349 exp4a 366 imdistan 444 pm5.3 475 pm4.87 557 nan 696 pm4.14dc 895 pm5.6dc 931 2sb6 2035 2sb6rf 2041 2exsb 2060 mor 2120 eu2 2122 moanim 2152 r2alf 2547 r3al 2574 r19.23t 2638 ceqsralt 2827 rspc2gv 2919 ralrab 2964 ralrab2 2968 euind 2990 reu2 2991 reu3 2993 rmo4 2996 rmo3f 3000 reuind 3008 rmo2ilem 3119 rmo3 3121 ralss 3290 rabss 3301 raldifb 3344 unissb 3918 elintrab 3935 ssintrab 3946 dftr5 4185 repizf2lem 4245 reusv3 4551 tfi 4674 raliunxp 4863 fununi 5389 dff13 5898 dfsmo2 6439 tfr1onlemaccex 6500 tfrcllemaccex 6513 qliftfun 6772 nnnninfeq2 7304 prime 9554 raluz 9781 raluz2 9782 ralrp 9879 facwordi 10970 modfsummod 11977 nnwosdc 12568 isprm2 12647 isprm4 12649 metcnp 15194 limcdifap 15344 bdcriota 16270 nnnninfex 16418 |
| Copyright terms: Public domain | W3C validator |