Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > impexp | GIF version |
Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
Ref | Expression |
---|---|
impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.3 259 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
2 | pm3.31 260 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
3 | 1, 2 | impbii 125 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imp4a 347 exp4a 364 imdistan 441 pm5.3 467 pm4.87 547 nan 682 pm4.14dc 880 pm5.6dc 916 2sb6 1972 2sb6rf 1978 2exsb 1997 mor 2056 eu2 2058 moanim 2088 r2alf 2483 r3al 2510 r19.23t 2573 ceqsralt 2753 rspc2gv 2842 ralrab 2887 ralrab2 2891 euind 2913 reu2 2914 reu3 2916 rmo4 2919 rmo3f 2923 reuind 2931 rmo2ilem 3040 rmo3 3042 ralss 3208 rabss 3219 raldifb 3262 unissb 3819 elintrab 3836 ssintrab 3847 dftr5 4083 repizf2lem 4140 reusv3 4438 tfi 4559 raliunxp 4745 fununi 5256 dff13 5736 dfsmo2 6255 tfr1onlemaccex 6316 tfrcllemaccex 6329 qliftfun 6583 nnnninfeq2 7093 prime 9290 raluz 9516 raluz2 9517 ralrp 9611 facwordi 10653 modfsummod 11399 nnwosdc 11972 isprm2 12049 isprm4 12051 metcnp 13152 limcdifap 13271 bdcriota 13765 |
Copyright terms: Public domain | W3C validator |