| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impexp | GIF version | ||
| Description: Import-export theorem. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Mar-2013.) |
| Ref | Expression |
|---|---|
| impexp | ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.3 261 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | pm3.31 262 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imp4a 349 exp4a 366 imdistan 444 pm5.3 475 pm4.87 557 nan 694 pm4.14dc 892 pm5.6dc 928 2sb6 2013 2sb6rf 2019 2exsb 2038 mor 2097 eu2 2099 moanim 2129 r2alf 2524 r3al 2551 r19.23t 2614 ceqsralt 2801 rspc2gv 2891 ralrab 2936 ralrab2 2940 euind 2962 reu2 2963 reu3 2965 rmo4 2968 rmo3f 2972 reuind 2980 rmo2ilem 3090 rmo3 3092 ralss 3261 rabss 3272 raldifb 3315 unissb 3883 elintrab 3900 ssintrab 3911 dftr5 4150 repizf2lem 4210 reusv3 4512 tfi 4635 raliunxp 4824 fununi 5348 dff13 5847 dfsmo2 6383 tfr1onlemaccex 6444 tfrcllemaccex 6457 qliftfun 6714 nnnninfeq2 7243 prime 9485 raluz 9712 raluz2 9713 ralrp 9810 facwordi 10898 modfsummod 11819 nnwosdc 12410 isprm2 12489 isprm4 12491 metcnp 15034 limcdifap 15184 bdcriota 15933 nnnninfex 16074 |
| Copyright terms: Public domain | W3C validator |