![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adantll | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
adantll | ⊢ (((𝜃 ∧ 𝜑) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ ((𝜃 ∧ 𝜑) → 𝜑) | |
2 | adant2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 1, 2 | sylan 283 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ 𝜓) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: ad2antlr 489 ad2ant2l 508 ad2ant2lr 510 ad5ant23 522 ad5ant24 523 ad5ant25 524 3ad2antl3 1161 3adant1l 1230 reu6 2928 sbc2iegf 3035 sbcralt 3041 sbcrext 3042 indifdir 3393 pofun 4314 poinxp 4697 ssimaex 5579 fndmdif 5623 dffo4 5666 fcompt 5688 fconst2g 5733 foco2 5756 foeqcnvco 5793 f1eqcocnv 5794 fliftel1 5797 isores3 5818 acexmid 5876 tfrlemi14d 6336 tfrcl 6367 dom2lem 6774 fiintim 6930 ordiso2 7036 mkvprop 7158 lt2addnq 7405 lt2mulnq 7406 ltexnqq 7409 genpdf 7509 addnqprl 7530 addnqpru 7531 addlocpr 7537 recexprlemopl 7626 caucvgsrlemgt1 7796 add4 8120 cnegex 8137 ltleadd 8405 zextle 9346 peano5uzti 9363 fnn0ind 9371 xrlttr 9797 xaddass 9871 iccshftr 9996 iccshftl 9998 iccdil 10000 icccntr 10002 fzaddel 10061 fzrev 10086 exbtwnzlemshrink 10251 seq3val 10460 iseqf1olemab 10491 exp3vallem 10523 mulexp 10561 expadd 10564 expmul 10567 leexp1a 10577 bccl 10749 hashfacen 10818 ovshftex 10830 2shfti 10842 caucvgre 10992 cvg1nlemcau 10995 resqrexlemcvg 11030 cau3lem 11125 rexico 11232 iooinsup 11287 climmpt 11310 subcn2 11321 climrecvg1n 11358 climcvg1nlem 11359 climcaucn 11361 mertenslem2 11546 eftlcl 11698 reeftlcl 11699 dvdsext 11863 sqoddm1div8z 11893 bezoutlemaz 12006 bezoutr1 12036 dvdslcm 12071 lcmeq0 12073 lcmcl 12074 lcmneg 12076 lcmdvds 12081 coprmgcdb 12090 dvdsprime 12124 pc2dvds 12331 prmpwdvds 12355 infpnlem1 12359 1arith 12367 mhmco 12879 mhmima 12880 dfgrp2 12907 mulgfng 12992 subgintm 13063 islmod 13386 islmodd 13388 cnco 13760 cnss1 13765 tx2cn 13809 upxp 13811 metss 14033 txmetcnp 14057 cncfss 14109 cosz12 14240 bj-findis 14770 |
Copyright terms: Public domain | W3C validator |