Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adantll | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
adantll | ⊢ (((𝜃 ∧ 𝜑) ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((𝜃 ∧ 𝜑) → 𝜑) | |
2 | adant2.1 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
3 | 1, 2 | sylan 281 | 1 ⊢ (((𝜃 ∧ 𝜑) ∧ 𝜓) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: ad2antlr 486 ad2ant2l 505 ad2ant2lr 507 ad5ant23 519 ad5ant24 520 ad5ant25 521 3ad2antl3 1156 3adant1l 1225 reu6 2919 sbc2iegf 3025 sbcralt 3031 sbcrext 3032 indifdir 3383 pofun 4297 poinxp 4680 ssimaex 5557 fndmdif 5601 dffo4 5644 fcompt 5666 fconst2g 5711 foco2 5733 foeqcnvco 5769 f1eqcocnv 5770 fliftel1 5773 isores3 5794 acexmid 5852 tfrlemi14d 6312 tfrcl 6343 dom2lem 6750 fiintim 6906 ordiso2 7012 mkvprop 7134 lt2addnq 7366 lt2mulnq 7367 ltexnqq 7370 genpdf 7470 addnqprl 7491 addnqpru 7492 addlocpr 7498 recexprlemopl 7587 caucvgsrlemgt1 7757 add4 8080 cnegex 8097 ltleadd 8365 zextle 9303 peano5uzti 9320 fnn0ind 9328 xrlttr 9752 xaddass 9826 iccshftr 9951 iccshftl 9953 iccdil 9955 icccntr 9957 fzaddel 10015 fzrev 10040 exbtwnzlemshrink 10205 seq3val 10414 iseqf1olemab 10445 exp3vallem 10477 mulexp 10515 expadd 10518 expmul 10521 leexp1a 10531 bccl 10701 hashfacen 10771 ovshftex 10783 2shfti 10795 caucvgre 10945 cvg1nlemcau 10948 resqrexlemcvg 10983 cau3lem 11078 rexico 11185 iooinsup 11240 climmpt 11263 subcn2 11274 climrecvg1n 11311 climcvg1nlem 11312 climcaucn 11314 mertenslem2 11499 eftlcl 11651 reeftlcl 11652 dvdsext 11815 sqoddm1div8z 11845 bezoutlemaz 11958 bezoutr1 11988 dvdslcm 12023 lcmeq0 12025 lcmcl 12026 lcmneg 12028 lcmdvds 12033 coprmgcdb 12042 dvdsprime 12076 pc2dvds 12283 prmpwdvds 12307 infpnlem1 12311 1arith 12319 mhmco 12705 mhmima 12706 dfgrp2 12732 cnco 13015 cnss1 13020 tx2cn 13064 upxp 13066 metss 13288 txmetcnp 13312 cncfss 13364 cosz12 13495 bj-findis 14014 |
Copyright terms: Public domain | W3C validator |