ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.4 GIF version

Theorem pm5.4 248
Description: Antecedent absorption implication. Theorem *5.4 of [WhiteheadRussell] p. 125. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pm5.4 ((𝜑 → (𝜑𝜓)) ↔ (𝜑𝜓))

Proof of Theorem pm5.4
StepHypRef Expression
1 pm2.43 53 . 2 ((𝜑 → (𝜑𝜓)) → (𝜑𝜓))
2 ax-1 6 . 2 ((𝜑𝜓) → (𝜑 → (𝜑𝜓)))
31, 2impbii 125 1 ((𝜑 → (𝜑𝜓)) ↔ (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sbequ8  1840  moabs  2068  rgenm  3517  isprm4  12073  limcdifap  13425
  Copyright terms: Public domain W3C validator