| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm5.4 | GIF version | ||
| Description: Antecedent absorption implication. Theorem *5.4 of [WhiteheadRussell] p. 125. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| pm5.4 | ⊢ ((𝜑 → (𝜑 → 𝜓)) ↔ (𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm2.43 53 | . 2 ⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | |
| 2 | ax-1 6 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜑 → 𝜓))) | |
| 3 | 1, 2 | impbii 126 | 1 ⊢ ((𝜑 → (𝜑 → 𝜓)) ↔ (𝜑 → 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: imbibi 252 sbequ8 1861 moabs 2094 isprm4 12287 limcdifap 14898 | 
| Copyright terms: Public domain | W3C validator |